Startup and Shutdown

I n this chapter, we'll describe the steps required to boot Windows and the options that can affect
system startup. Understanding the details of the boot process will help you diagnose problems that
can arise during a boot. Then we'll explain the kinds of things that can go wrong during the boot
process and how to resolve them. Finally, we'll explain what occurs on an orderly system shutdown.

Boot Process

In describing the Windows boot process, we'll start with the installation of Windows and proceed
through the execution of boot support files. Device drivers are a crucial part of the boot process, so
we'll explain the way that they control the point in the boot process at which they load and initialize.
Then we'll describe how the executive subsystems initialize and how the kernel launches the user-
mode portion of Windows by starting the Session Manager process (Smss.exe), which starts the initial
two sessions (session 0 and session 1). Along the way, we'll highlight the points at which various on-
screen messages appear to help you correlate the internal process with what you see when you watch
Windows boot.

The early phases of the boot process differ significantly on systems with a BIOS (basic input output
system) versus systems with an EFl (Extensible Firmware Interface). EFl is a newer standard that does
away with much of the legacy 16-bit code that BIOS systems use and allows the loading of preboot
programs and drivers to support the operating system loading phase. The next sections describe the
portions of the boot process specific to BIOS-based systems and are followed with a section describ-
ing the EFI-specific portions of the boot process.

To support these different firmware implementations (as well as EFI 2.0, which is known as Unified
EFI, or UEFI), Windows provides a boot architecture that abstracts many of the differences away from
users and developers in order to provide a consistent environment and experience regardless of the
type of firmware used on the installed system.

BIOS Preboot

The Windows boot process doesn't begin when you power on your computer or press the reset but-
ton. It begins when you install Windows on your computer. At some point during the execution of the
Windows Setup program, the system’s primary hard disk is prepared with code that takes part in the
boot process. Before we get into what this code does, let's look at how and where Windows places
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the code on a disk. Since the early days of MS-DOS, a standard has existed on x86 systems for the way

physical hard disks are divided into volumes.

Microsoft operating systems split hard disks into discrete areas known as partitions and use file
systems (such as FAT and NTFS) to format each partition into a volume. A hard disk can contain up
to four primary partitions. Because this apportioning scheme would limit a disk to four volumes, a
special partition type, called an extended partition, further allocates up to four additional partitions

within each extended partition. Extended partitions can contain extended partitions, which can con-
tain extended partitions, and so on, making the number of volumes an operating system can place on
a disk effectively infinite. Figure 13-1 shows an example of a hard disk layout, and Table 13-1 summa-
rizes the files involved in the BIOS boot process. (You can learn more about Windows partitioning in
Chapter 9, “Storage Management.”)

TABLE 13-1 BIOS Boot Process Components

Component

Master Boot Record
(MBR)

Boot sector (also
called volume boot
record)

Bootmgr

Winload.exe

Winresume.exe

Memtest.exe

Ntoskrnl.exe

Hal.dll

Processor Execution

16-bit real mode

16-bit real mode

16-bit real mode and 32-
bit without paging

32-bit protected mode
with paging, 64-bit
protected mode if booting
a Win64 installation

32-bit protected mode,
64-bit protected mode
if resuming a Win64
installation

32-bit protected mode

Protected mode with
paging

Protected mode with
paging
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Responsibilities

Reads and loads the volume boot record
(VBR)

Understands the file system on the partition
and locates Bootmgr by name, loading it into
memory

Reads the Boot Configuration Database
(BCD), presents boot menu, and allows
execution of preboot programs such as the
Memory Test application (Memtest.exe). If a
64-bit installation is booted, switches to 64-
bit long mode before loading Winload.

Loads Ntoskrnl.exe and its dependencies
(Bootvid.dll on 32-bit systems, Hal.dll,
Kdcom.dll, Ci.dll, Clfs.sys, Pshed.dll) and boot-
start device drivers.

If resuming after a hibernation state, resumes
from the hibernation file (Hiberfil.sys) instead
of typical Windows loading.

If selected from the Boot Manager, starts
up and provides a graphical interface for
scanning memory and detecting damaged
RAM.

Initializes executive subsystems and boot
and system-start device drivers, prepares the
system for running native applications, and
runs Smss.exe.

Kernel-mode DLL that interfaces Ntoskrnl
and drivers to the hardware. It also acts as a
driver for the motherboard itself, supporting
soldered components that are not otherwise
managed by another driver.

Location

Per storage device
Per active
(bootable)
partition

Per system

Per Windows

installation

Per Windows
installation

Per system

Per Windows
installation

Per Windows
installation



Component Processor Execution Responsibilities Location

Smss.exe Native application Initial instance starts a copy of itself to initial- | Per Windows
ize each session. The session 0 instance loads | installation
the Windows subsystem driver (Win32k.sys)
and starts the Windows subsystem process
(Csrss.exe) and Windows initialization process
(Wininit.exe). All other per-session instances
start a Csrss and Winlogon process.

Wininit.exe Windows application Starts the service control manager (SCM), the | Per Windows
Local Security Authority process (LSASS), and | installation
the local session manager (LSM). Initializes
the rest of the registry and performs user-
mode initialization tasks.

Winlogon.exe Windows application Coordinates logon and user security, launches | Per Windows
LogonUl. installation
Logonui.exe Windows application Presents interactive logon dialog box. Per Windows
installation
Services.exe Windows application Loads and initializes auto-start device drivers | Per Windows
and Windows services. installation
Boot code
1
2 -,
3 Partition table
4

Partitions within an
extended partition

Boot partition

| | | |
Partition 1 Partition 2 Partition 3 Partition 4
(Extended)

I:l MBR I:l Boot sector I:l Extended partition boot record

FIGURE 13-1 Sample hard disk layout

Physical disks are addressed in units known as sectors. A hard disk sector on a BIOS PC is typically
512 bytes (but moving to 4,096 bytes; see Chapter 9 for more information). Utilities that prepare hard
disks for the definition of volumes, such as the Windows Setup program, write a sector of data called
a Master Boot Record (MBR) to the first sector on a hard disk. (MBR partitioning is described in Chap-
ter 9.) The MBR includes a fixed amount of space that contains executable instructions (called boot
code) and a table (called a partition table) with four entries that define the locations of the primary
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partitions on the disk. When a BIOS-based computer boots, the first code it executes is called the
BIOS, which is encoded into the computer’s flash memory. The BIOS selects a boot device, reads that
device's MBR into memory, and transfers control to the code in the MBR.

The MBRs written by Microsoft partitioning tools, such as the one integrated into Windows Setup
and the Disk Management MMC snap-in, go through a similar process of reading and transferring
control. First, an MBR'’s code scans the primary partition table until it locates a partition containing a
flag (Active) that signals the partition is bootable. When the MBR finds at least one such flag, it reads
the first sector from the flagged partition into memory and transfers control to code within the parti-
tion. This type of partition is called a system partition, and the first sector of such a partition is called
a boot sector or volume boot record (VBR). The volume defined for this partition is called the system
volume.

Operating systems generally write boot sectors to disk without a user’s involvement. For example,
when Windows Setup writes the MBR to a hard disk, it also writes the file system boot code (part of
the boot sector) to a 100-MB bootable partition of the disk, marked as hidden to prevent accidental
modification after the operating system has loaded. This is the system volume described earlier.

Before writing to a partition’s boot sector, Windows Setup ensures that the boot partition (the boot
partition is the partition on which Windows is installed, which is typically not the same as the system
partition, where the boot files are located) is formatted with NTFS, the only supported file system that
Windows can boot from when installed on a fixed disk, or formats the boot partition (and any other
partition) with NTFS. Note that the format of the system partition can be any format that Windows
supports (such as FAT32). If partitions are already formatted appropriately, you can instruct Setup
to skip this step. After Setup formats the system partition, Setup copies the Boot Manager program
(Bootmgr) that Windows uses to the system partition (the system volume).

Another of Setup's roles is to prepare the Boot Configuration Database (BCD), which on BIOS
systems is stored in the \Boot\BCD file on the root directory of the system volume. This file contains
options for starting the version of Windows that Setup installs and any preexisting Windows installa-
tions. If the BCD already exists, the Setup program simply adds new entries relevant to the new instal-
lation. For more information on the BCD, see Chapter 3, "System Mechanisms,” in Part 1.

The BIOS Boot Sector and Bootmgr

Setup must know the partition format before it writes a boot sector because the contents of the boot
sector vary depending on the format. For a partition that is in NTFS format, Windows writes NTFS-
capable code. The role of the boot-sector code is to give Windows information about the structure
and format of a volume and to read in the Bootmgr file from the root directory of the volume. Thus,
the boot-sector code contains just enough read-only file system code to accomplish this task. After
the boot-sector code loads Bootmgr into memory, it transfers control to Bootmgr’s entry point. If the
boot-sector code can’t find Bootmgr in the volume's root directory, it displays the error message
"BOOTMGR is missing".

Bootmgr is actually a concatenation of a .com file (Startup.com) and an .exe file (Bootmgr.exe), so it
begins its existence while a system is executing in an x86 operating mode called real mode, associated
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with .com files. In real mode, no virtual-to-physical translation of memory addresses occurs, which
means that programs that use the memory addresses interpret them as physical addresses and

that only the first 1 MB of the computer’s physical memory is accessible. Simple MS-DOS programs
execute in a real-mode environment. However, the first action Bootmgr takes is to switch the system
to protected mode. Still no virtual-to-physical translation occurs at this point in the boot process, but
a full 32 bits of memory becomes accessible. After the system is in protected mode, Bootmgr can
access all of physical memory. After creating enough page tables to make memory below 16 MB ac-
cessible with paging turned on, Bootmgr enables paging. Protected mode with paging enabled is the
mode in which Windows executes in normal operation.

After Bootmgr enables protected mode, it is fully operational. However, it still relies on functions
supplied by BIOS to access IDE-based system and boot disks as well as the display. Bootmgr’s BIOS-
interfacing functions briefly switch the processor back to real mode so that services provided by the
BIOS can be executed. Bootmgr next reads the BCD file from the \Boot directory using built-in file
system code. Like the boot sector’s code, Bootmgr contains a lightweight NTFS file system library
(Bootmgr also supports other file systems, such as FAT, El Torito CDFS, and UDFS, as well as WIM and
VHD files); unlike the boot sector’s code, Bootmgr's file system code can also read subdirectories.

Note Bootmgr and other boot applications can still write to preallocated files on NTFS
volumes, because only the data needs to be written, instead of performing all the complex
allocation work that is typically required on an NTFS volume. This is how these applications
can write to bootsect.dat, for example.

Bootmgr next clears the screen. If Windows enabled the BCD setting to inform Bootmgr of a
hibernation resume, this shortcuts the boot process by launching Winresume.exe, which will read the
contents of the hibernation file into memory and transfer control to code in the kernel that resumes
a hibernated system. That code is responsible for restarting drivers that were active when the system
was shut down. Hiberfil.sys is only valid if the last computer shutdown was hibernation, since the
hibernation file is invalidated after a resume, to avoid multiple resumes from the same point. (See the
section "The Power Manager” in Chapter 8, “I/O System,” for information on hibernation.)

If there is more than one boot-selection entry in the BCD, Bootmgr presents the user with the
boot-selection menu (if there is only one entry, Bootmgr bypasses the menu and proceeds to launch
Winload.exe). Selection entries in the BCD direct Bootmgr to the partition on which the Windows sys-
tem directory (typically \Windows) of the selected installation resides. If Windows was upgraded from
an older version, this partition might be the same as the system partition, or, on a clean install, it will
always be the 100-MB hidden partition described earlier.

Entries in the BCD can include optional arguments that Bootmgr, Winload, and other components
involved in the boot process interpret. Table 13-2 contains a list of these options and their effects for
Bootmgr, Table 13-3 shows a list of BCD options for boot applications, and Table 13-4 shows BCD op-
tions for the Windows boot loader.

The Bcdedit.exe tool provides a convenient interface for setting a number of the switches. Some
options that are included in the BCD are stored as command-line switches ("/DEBUG", for example) to
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the registry value HKLM\SYSTEM\CurrentControlSet\Control\SystemStartOptions; otherwise, they are
stored only in the BCD binary format in the BCD hive.

TABLE 13-2 BCD Options for the Windows Boot Manager (Bootmgr)

BCD Element Values Meaning
bcdfilepath Path Points to the Boot Configuration Database (usually \Boot\BCD) file on the disk.
displaybootmenu Boolean Determines whether the Boot Manager shows the boot menu or picks the default

entry automatically.

keyringaddress Physical Specifies the physical address where the BitLocker key ring is located.
address
noerrordisplay Boolean Silences the output of errors encountered by the Boot Manager.
Resume Boolean Specifies whether or not resuming from hibernation should be attempted. This

option is automatically set when Windows hibernates.

Timeout Seconds Number of seconds that the Boot Manager should wait before choosing the
default entry.

resumeobject GUID Identifier for which boot application should be used to resume the system after
hibernation.

displayorder List Definition of the Boot Manager’s display order list.

toolsdisplayorder List Definition of the Boot Manager’s tool display order list.

bootsequence List Definition of the one-time boot sequence.

Default GUID The default boot entry to launch.

customactions List Definition of custom actions to take when a specific keyboard sequence has been
entered.

bcddevice GUID Device ID of where the BCD store is located.

TABLE 13-3 BCD Options for Boot Applications

BCD Element Values Meaning

avoidlowmemory Integer Forces physical addresses below the specified value to be
avoided by the boot loader as much as possible. Sometimes
required on legacy devices (such as ISA) where only memory
below 16 MB is usable or visible.

badmemoryaccess Boolean Forces usage of memory pages in the Bad Page List (see
Chapter 10, "Memory Management,” for more information on
the page lists).

badmemorylist Array of page frame | Specifies a list of physical pages on the system that are known
numbers (PFNs) to be bad because of faulty RAM.
baudrate Baud rate in bps Specifies an override for the default baud rate (19200) at which
a remote kernel debugger host will connect through a serial
port.
bootdebug Boolean Enables remote boot debugging for the boot loader. With this

option enabled, you can use Kd.exe or Windbg.exe to connect
to the boot loader.
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BCD Element

bootems

busparams

channel

configaccesspolicy

debugaddress

debugport

debugstart

debugtype

emsbaudrate
emsport

extendedinput

firstmegabytepolicy

fontpath

graphicsmodedisabled
graphicsresolution

initialconsoleinput
integrityservices
locale

noumex

novesa

Values

Boolean

String

Channel between 0
and 62

Default,
DisallowMmConfig

Hardware address

COM port number

Active, AutoEnable,
Disable

Serial, 1394, USB

Baud rate in bps
COM port number
Boolean

UseNone, UseAll,
UsePrivate

String

Boolean
Resolution
Boolean

Default, Disable,
Enable
Localization string

Boolean

Boolean

Meaning

Used to cause Windows to enable Emergency Management
Services (EMS) for boot applications, which reports boot
information and accepts system management commands
through a serial port.

If a physical PCI debugging device is used to provide FireWire
or serial debugging, specifies the PCl bus, function, and device
number for the device.

Used in conjunction with {debugtype, 1394} to specify
the IEEE 1394 channel through which kernel debugging
communications will flow.

Configures whether the system uses memory mapped /0O to
access the PCI manufacturer’s configuration space or falls back
to using the HAL's 1/O port access routines. Can sometimes be
helpful in solving platform device problems.

Specifies the hardware address of the serial (COM) port used
for debugging.

Specifies an override for the default serial port (usually COM2
on systems with at least two serial ports) to which a remote
kernel debugger host is connected.

Specifies settings for the debugger when kernel debugging is
enabled. AutoEnable enables the debugger when a breakpoint
or kernel exception, including kernel crashes, occurs.
Specifies whether kernel debugging will be communicated
through a serial, FireWire (IEEE 1394), or USB 2.0 port. (The
default is serial.)

Specifies the baud rate to use for EMS.

Specifies the serial (COM) port to use for EMS.

Enables boot applications to leverage BIOS support for
extended console input.

Specifies how the low 1 MB of physical memory is consumed
by the HAL to mitigate corruptions by the BIOS during power
transitions.

Specifies the path of the OEM font that should be used by the
boot application.

Disables graphics mode for boot applications.
Sets the graphics resolution for boot applications.

Specifies an initial character that the system inserts into the PC/
AT keyboard input buffer.

Enables or disables code integrity services, which are used by
Kernel Mode Code Signing. Default is Enabled.

Sets the locale for the boot application (such as EN-US).
Disables user-mode exceptions when kernel debugging
is enabled. If you experience system hangs (freezes) when
booting in debugging mode, try enabling this option.

Disables the usage of VESA display modes.
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BCD Element Values
recoveryenabled Boolean
recoverysequence List
relocatephysical Physical address
targetname String
testsigning Boolean
traditionalksegmappings Boolean
truncatememory Address in bytes

Meaning

Enables the recovery sequence, if any. Used by fresh
installations of Windows to present the Windows PE-based
Startup And Recovery interface.

Defines the recovery sequence (described above).

Relocates an automatically selected NUMA node’s physical
memory to the specified physical address.

Defines the target name for the USB debugger when used with
USB2 debugging {debugtype, usb}.

Enables test-signing mode, which allows driver developers
to load locally signed 64-bit drivers. This option results in a
watermarked desktop.

Determines whether the kernel will honor the traditional KSEGO
mapping that was originally required for MIPS support. With
KSEGO mappings, the bottom 24 bits of the kernel's initial
virtual address space will map to the same physical address
(that is, 0x80800000 virtual is 0x800000 in RAM). Disabling this
requirement allows more low memory to be available, which
can help with some hardware.

Disregards physical memory above the specified physical
address.

TABLE 13-4 BCD Options for the Windows Boot Loader (Winload)

BCD Element Values

advancedoptions Boolean

bootlog Boolean

bootstatuspolicy DisplayAllFailures,
IgnoreAllFailures,
IgnoreShutdownFailures,
IgnoreBootFailures

bootux Disabled, Basic, Standard

clustermodeaddressing Number of processors

configflags Flags
dbgtransport Transport image name
debug Boolean
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Meaning

If false, executes the default behavior of launching the
auto-recovery command boot entry when the boot fails;
otherwise, displays the boot error and offers the user the
advanced boot option menu associated with the boot entry.
This is equivalent to pressing F8.

Causes Windows to write a log of the boot to the file
%SystemRoot%\Ntbtlog.txt.

Overrides the system’s default behavior of offering the user
a troubleshooting boot menu if the system did not complete
the previous boot or shutdown.

Defines the boot graphics user experience that the user will
see. Disabled means that no graphics will be seen during
boot time (only a black screen), while Basic will display only
a progress bar during load. Standard displays the usual
Windows logo animation during boot.

Defines the maximum number of processors to include in a
single Advanced Programmable Interrupt Controller (APIC)
cluster.

Specifies processor-specific configuration flags.

Overrides using one of the default kernel debugging
transports (Kdcom.dll, Kd1394, Kdusb.dll) and instead uses
the given file, permitting specialized debugging transports
to be used that are not typically supported by Windows.

Enables kernel-mode debugging.



BCD Element
detecthal

driverloadfailurepolicy

ems

evstore

exportascd

groupaware

groupsize

hal

halbreakpoint

hypervisorbaudrate

hypervisorchannel

hypervisordebug
hypervisordebugport

hypervisordebugtype

hypervisordisableslat

hypervisorlaunchtype

hypervisorpath

hypervisoruselargevtlb

Values
Boolean

Fatal, UseErrorControl

Boolean

String

Boolean

Boolean

Integer

HAL image name

Boolean

Baud rate in bps
Channel number from
0to 62

Boolean

COM port number

Serial, 1394

Boolean

Off, Auto

Hypervisor binary image
name

Boolean

Meaning
Enables the dynamic detection of the HAL.

Describes the loader behavior to use when a boot driver
has failed to load. Fatal will prevent booting, while
UseErrorControl causes the system to honor a driver’s
default error behavior, specified in its service key.

Instructs the kernel to use EMS as well. (If only bootems is
used, only the boot loader will use EMS.)

Stores the location of a boot preloaded hive.

If this option is set, the kernel will treat the ramdisk file
specified as an ISO image and not a Windows Installation
Media (WIM) or System Deployment Image (SDI) file.

Forces the system to use groups other than zero when
associating the group seed to new processes. Used only on
64-bit Windows.

Forces the maximum number of logical processors that can
be part of a group (maximum of 64). Can be used to force
groups to be created on a system that would normally not
require them to exist. Must be a power of 2, and is used only
on 64-bit Windows.

Overrides the default file name for the HAL image (hal.dll).
This option can be useful when booting a combination of
a checked HAL and checked kernel (requires specifying the
kernel element as well).

Causes the HAL to stop at a breakpoint early in HAL
initialization. The first thing the Windows kernel does when
it initializes is to initialize the HAL, so this breakpoint is the
earliest one possible (unless boot debugging is used). If
the switch is used without the /DEBUG switch, the system
will elicit a blue screen with a STOP code of 0x00000078
(PHASEO_ EXCEPTION).

If using serial hypervisor debugging, specifies the baud rate
to use.

If using FireWire (IEEE 1394) hypervisor debugging, specifies
the channel number to use.

Enables debugging the hypervisor.

If using serial hypervisor debugging, specifies the COM port
to use.

Specifies which hardware port to use for hypervisor
debugging.

Forces the hypervisor to ignore the presence of the Second
Layer Address Translation (SLAT) feature if supported by the
processor.

Enables loading of the hypervisor on a Hyper-V system, or
forces it to be disabled.

Specifies the path of the hypervisor binary.

Enables the hypervisor to use a larger amount of virtual TLB
entries.
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BCD Element

increaseuserva

kernel

lastknowngood

loadoptions

maxgroup

maxproc

msi

nocrashautoreboot

nointegritychecks

nolowmem

numproc

nx

onecpu

Values

Size in MB

Kernel image name

Boolean

Extra command-line
parameters

Boolean

Boolean

Default, ForceDisable

Boolean

Boolean

Boolean

Number of processors

Optln, OptOut,
AlwaysOff, AlwaysOn

Boolean
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Meaning

Increases the size of the user process address space from 2
GB to the specified size, up to 3 GB (and therefore reduces
the size of system space). Giving virtual-memory-intensive
applications such as database servers a larger address space
can improve their performance. (See the section "Address
Space Layout” in Chapter 9 for more information.)

Overrides the default file name for the kernel image
(Ntoskrnl.exe). This option can be useful when booting a
combination of a checked HAL and checked kernel (requires
specifying the hal element to be used as well).

Boots the last known good configuration, instead of the
current control set.

This option is used to add other command-line parameters
that are not defined by BCD elements. These parameters
could be used to configure or define the operation of other
components on the system that might not be able to use the
BCD (such as legacy components).

Maximizes the number of processor groups that are created
during processor topology configuration. See Chapter 3 in
Part 1 for more information about group selection and its
relationship to NUMA.

Forces the maximum number of supported processors
that Windows will report to drivers and applications to
accommodate the arrival of additional CPUs via dynamic
processor support.

Allows disabling support for message signaled interrupts.

Disables the automatic reboot after a system crash (blue
screen).

Disables integrity checks performed by Windows when
loading drivers. Automatically removed at the next reboot.

Requires that PAE be enabled and that the system have
more than 4 GB of physical memory. If these conditions
are met, the PAE-enabled version of the Windows kernel,
Ntkrnlpa.exe, won't use the first 4 GB of physical memory.
Instead, it will load all applications and device drivers and
allocate all memory pools from above that boundary. This
switch is useful only to test device-driver compatibility with
large memory systems.

Specifies the number of CPUs that can be used on a
multiprocessor system. Example: /NUMPROC=2 on a four-
way system will prevent Windows from using two of the four
processors.

This option is available only on 32-bit versions of Windows
when running on processors that support no-execute
memory and only when PAE (explained further in the pae
entry) is also enabled. It enables no-execute protection. No-
execute protection is always enabled on 64-bit versions of
Windows on x64 processors. See Chapter 9 for a description
of this behavior.

Causes Windows to use only one CPU on a multiprocessor
system.



BCD Element

optionsedit

osdevice

pae

pciexpress

perfmem

quietboot

ramdiskimagelength

ramdiskimageoffset

ramdisksdipath

ramdisktftpblocksize

ramdisktftpclientport

ramdisktftpwindowsize

removememory

restrictapiccluster

resumeobject

safeboot

safebootalternateshell

Values

Boolean

GUID

Default, ForceEnable,
ForceDisable

Default, ForceDisable

Size in MB

Boolean

Length in bytes
Offset in bytes

Image file name

Block size

Port number

Window size

Size in bytes

Cluster number
Object GUID
Minimal, Network,

DsRepair

Boolean

Meaning

Enables the options editor in the Boot Manager. With this
option, Boot Manager allows the user to interactively set on-
demand command-line options and switches for the current
boot. This is equivalent to pressing F10.

Specifies the device on which the operating system is
installed.

Default allows the boot loader to determine whether the
system supports PAE and loads the PAE kernel. ForceEnable
forces this behavior, while ForceDisable forces the loader

to load the non—PAE version of the Windows kernel, even if
the system is detected as supporting x86 PAEs and has more
than 4 GB of physical memory.

Can be used to disable support for PCl Express buses and
devices.

Size of the buffer to allocate for performance data logging.
This option acts similarly to the removememory element,
since it prevents Windows from seeing the size specified as
available memory.

Instructs Windows not to initialize the VGA video driver
responsible for presenting bitmapped graphics during the
boot process. The driver is used to display boot progress
information, so disabling it will disable the ability of
Windows to show this information.

Size of the ramdisk specified.

If the ramdisk contains other data (such as a header) before
the virtual file system, instructs the boot loader where to
start reading the ramdisk file from.

Specifies the name of the SDI ramdisk to load.

If loading a WIM ramdisk from a network Trivial FTP (TFTP)
server, specifies the block size to use.

If loading a WIM ramdisk from a network TFTP server,
specifies the port.

If loading a WIM ramdisk from a network TFTP server,
specifies the window size to use.

Specifies an amount of memory Windows won't use.

Defines the largest APIC cluster number to be used by the
system.

Describes which application to use for resuming from
hibernation, typically Winresume.exe.

Specifies options for a safe-mode boot. Minimal
corresponds to safe mode without networking, Network to
safe mode with networking, and DsRepair to safe mode with
Directory Services Restore mode. (Safe mode is described
later in this chapter.)

Tells Windows to use the program specified by the HKLM\
SYSTEM\CurrentControlSet\Control\SafeBoot\AlternateShell
value as the graphical shell rather than the default, which is
Windows Explorer. This option is referred to as Safe Mode
With Command Prompt in the alternate boot menu.
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BCD Element Values

s0s Boolean

stampdisks Boolean

systemroot String

targetname Name

tpmbootentropy Default, ForceDisable,
ForceEnable

usefirmwarepcisettings Boolean

uselegacyapicmode Boolean

usephysicaldestination Boolean

useplatformclock Boolean

vga Boolean

winpe Boolean

x2apicpolicy Disabled, Enabled,
Default

xsavepolicy Integer

xsaveaddfeature0-7 Integer

xsaveremovefeature Integer
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Meaning

Causes Windows to list the device drivers marked to load at
boot time and then to display the system version number
(including the build number), amount of physical memory,
and number of processors.

Specifies that Winload will write an MBR disk signature

to a RAW disk when booting Windows PE (Preinstallation
Environment). This can be required in deployment
environments in order to create a mapping from operating
system—enumerated hard disks to BIOS-enumerated hard
disks to know which disk should be the system disk.

Specifies the path, relative to osdevice, in which the
operating system is installed.

For USB 2.0 debugging, assigns a name to the machine that
is being debugged.

Forces a specific TPM Boot Entropy policy to be selected
by the boot loader and passed on to the kernel. TPM Boot
Entropy, when used, seeds the kernel’s random number
generator (RNG) with data obtained from the TPM (if
present).

Stops Windows from dynamically assigning I0/IRQ resources
to PCl devices and leaves the devices configured by the
BIOS. See Microsoft Knowledge Base article 148501 for more
information.

Forces usage of basic APIC functionality even though the
chipset reports extended APIC functionality as present. Used
in cases of hardware errata and/or incompatibility.

Forces the use of the APIC in physical destination mode.

Forces usage of the platforms's clock source as the system'’s
performance counter.

Forces Windows to use the VGA display driver instead of the
third-party high-performance driver.

Used by Windows PE, this option causes the configuration
manager to load the registry SYSTEM hive as a volatile hive
such that changes made to it in memory are not saved back
to the hive image.

Specifies whether extended APIC functionality should

be used if the chipset supports it. Disabled is equivalent

to setting uselegacyapicmode, while Enabled forces ACPI
functionality on even if errata are detected. Default uses the
chipset's reported capabilities (unless errata are present).

Forces the given XSAVE policy to be loaded from the XSAVE
Policy Resource Driver (Hwpolicy.sys).

Used while testing support for XSAVE on modern Intel
processors; allows for faking that certain processor features
are present when, in fact, they are not. This helps increase
the size of the CONTEXT structure and confirms that
applications work correctly with extended features that
might appear in the future. No actual extra functionality will
be present, however.

Forces the entered XSAVE feature not to be reported to the
kernel, even though the processor supports it.



BCD Element Values Meaning

xsaveprocessorsmask Integer Bitmask of which processors the XSAVE policy should apply
to.
xsavedisable Boolean Turns off support for the XSAVE functionality even though

the processor supports it.

If the user doesn't select an entry from the selection menu within the timeout period the BCD
specifies, Bootmgr chooses the default selection specified in the BCD (if there is only one entry, it im-
mediately chooses this one). Once the boot selection has been made, Bootmgr loads the boot loader
associated with that entry, which will be Winload.exe for Windows installations.

Winload.exe also contains code that queries the system’s ACPI BIOS to retrieve basic device and
configuration information. This information includes the following:

m  The time and date information stored in the system’s CMOS (nonvolatile memory)
= The number, size, and type of disk drives on the system

m legacy device information, such as buses (for example, ISA, PCl, EISA, Micro Channel Architec-
ture [MCAY]), mice, parallel ports, and video adapters are not queried and instead faked out

This information is gathered into internal data structures that will be stored under the HKLM\
HARDWARE\DESCRIPTION registry key later in the boot. This is mostly a legacy key as CMOS settings
and BIOS-detected disk drive configuration settings, as well as legacy buses, are no longer supported
by Windows, and this information is mainly stored for compatibility reasons. Today, it is the Plug and
Play manager database that stores the true information on hardware.

Next, Winload begins loading the files from the boot volume needed to start the kernel initializa-
tion. The boot volume is the volume that corresponds to the partition on which the system directory
(usually \Windows) of the installation being booted is located. The steps Winload follows here include:

1. Loads the appropriate kernel and HAL images (Ntoskrnl.exe and Hal.dll by default) as well as
any of their dependencies. If Winload fails to load either of these files, it prints the message
"Windows could not start because the following file was missing or corrupt”, followed by the
name of the file.

2. Reads in the VGA font file (by default, vgaoem.fon). If this file fails, the same error message as
described in step 1 will be shown.

3. Reads in the NLS (National Language System) files used for internationalization. By default,
these are | _intl.nls, c_1252.nls, and c_437.nls.

4. Reads in the SYSTEM registry hive, \Windows\System32\Config\System, so that it can deter-
mine which device drivers need to be loaded to accomplish the boot. (A hive is a file that
contains a registry subtree. You'll find more details about the registry in Chapter 4, “Manage-
ment Mechanisms,” in Part 1.)

5. Scans the in-memory SYSTEM registry hive and locates all the boot device drivers. Boot device
drivers are drivers necessary to boot the system. These drivers are indicated in the registry
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by a start value of SERVICE_BOOT_START (0). Every device driver has a registry subkey under
HKLM\SYSTEM\CurrentControlSet\Services. For example, Services has a subkey named fvevol
for the BitLocker driver, which you can see in Figure 13-2. (For a detailed description of the
Services registry entries, see the section “Services” in Chapter 4 in Part 1.)

2 Registry Editor (== &)
File Edit View Favorites Help
bl Fs Rec || Name Type Data

b 3b] (Default) REG_SZ (value not set)

EES:;; || ¥ Description REG_SZ @%SystemRoot\system32\drivers\frevol sys,-100

i [} | 8] DisplayName REG_SZ @%SystemRoot ¥\ system32\driversifvevel sys, 100

i #|ErrorControl REG_DWORD 000000003 (3)

asic 28] Group REG.SZ PnP Filter

howdiie REG_EXPAND SZ  System32\DRIVERS\Frevol.sys

HdAudAddService REG_DWORD 000000000 (0]

HDAudBus REG_DWORD 000000005 (5)

REG_DWORD 0x00000001 (1)

HidBatt

7] i I v o it L

Computer\HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\semvices\fvevol

FIGURE 13-2 BitLocker driver service settings

6. Adds the file system driver that's responsible for implementing the code for the type of
partition (NTFS) on which the installation directory resides to the list of boot drivers to load.
Winload must load this driver at this time; if it didn't, the kernel would require the drivers to
load themselves, a requirement that would introduce a circular dependency.

7. Loads the boot drivers, which should only be drivers that, like the file system driver for the
boot volume, would introduce a circular dependency if the kernel was required to load them.
To indicate the progress of the loading, Winload updates a progress bar displayed below the
text “Starting Windows". If the sos option is specified in the BCD, Winload doesn’t display the
progress bar but instead displays the file names of each boot driver. Keep in mind that the
drivers are loaded but not initialized at this time—they initialize later in the boot sequence.

8. Prepares CPU registers for the execution of Ntoskrnl.exe.

For steps 1 and 8, Winload also implements part of the Kernel Mode Code Signing (KMCS) infra-
structure, which was described in Chapter 3 in Part 1, by enforcing that all boot drivers are signed on
64-bit Windows. Additionally, the system will crash if the signature of the early boot files is incorrect.

This action is the end of Winload's role in the boot process. At this point, Winload calls the main
function in Ntoskrnl.exe (KiSystemStartup) to perform the rest of the system initialization.

The UEFI Boot Process

A UEFI-compliant system has firmware that runs boot loader code that's been programmed into the
system’s nonvolatile RAM (NVRAM) by Windows Setup. The boot code reads the BCD's contents,
which are also stored in NVRAM. The Bcdedit.exe tool mentioned earlier also has the ability to ab-
stract the firmware’s NVRAM variables in the BCD, allowing for full transparency of this mechanism.
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The UEFI standard defines the ability to prompt the user with an EFI Boot Manager that can be
used to select an operating system or additional applications to load. However, to provide a consis-
tent user interface between BIOS systems and UEFI systems, Windows sets a 2-second timeout for
selecting the EFl Boot Manager, after which the EFl-version of Bootmgr (Bootmgfw.efi) loads instead.

Hardware detection occurs next, where the boot loader uses UEFI interfaces to determine the
number and type of the following devices:

m  Network adapters
m  Video adapters

= Keyboards

= Disk controllers

m  Storage devices

On UEFI systems, all operations and programs execute in the native CPU mode with paging
enabled and no part of the Windows boot process executes in 16-bit mode. Note that although EFI
is supported on both 32-bit and 64-bit systems, Windows provides support for EFl only on 64-bit
platforms.

Just as Bootmgr does on x86 and x64 systems, the EFl Boot Manager presents a menu of boot
selections with an optional timeout. Once a boot selection is made, the loader navigates to the sub-
directory on the EFI System partition corresponding to the selection and loads the EFI version of the
Windows boot loader (Winload.efi).

The UEFI specification requires that the system have a partition designated as the EFI System
partition that is formatted with the FAT file system and is between 100 MB and 1 GB in size or up to
1 percent of the size of the disk, and each Windows installation has a subdirectory on the EFI System
partition under EF\Microsoft.

Note that thanks to the unified boot process and model present in Windows, the components in
Table 13-1 apply almost identically to UEFI systems, except that those ending in .exe end in .efi, and
they use EFI APls and services instead of BIOS interrupts. Another difference is that to avoid limita-
tions of the MBR partition format (including a maximum of four partitions per disk), UEFI systems use
the GPT (GUID Partition Table) format, which uses GUIDs to identify different partitions and their roles
on the system.

Note Although the EFl standard has been available since early 2001, and UEFI since 2005,
very few computer manufacturers have started using this technology because of back-
ward compatibility concerns and the difficulty of moving from an entrenched 20-year-old
technology to a new one. Two notable exceptions are Itanium machines and Apple’s Intel
Macintosh computers.
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Booting from iSCSI

Internet SCSI (iSCSI) devices are a kind of network-attached storage, in that remote physical disks
are connected to an iSCSI Host Bus Adapter (HBA) or through Ethernet. These devices, however, are
different from traditional network-attached storage (NAS) because they provide block-level access
to disks, unlike the logical-based access over a network file system that NAS employs. Therefore, an
iSCSI-connected disk appears as any other disk drive, both to the boot loader as well as to the OS, as
long as the Microsoft iSCSI Initiator is used to provide access over an Ethernet connection. By using
iSCSl-enabled disks instead of local storage, companies can save on space, power consumption, and
cooling.

Although Windows has traditionally supported booting only from locally connected disks, or
network booting through PXE, modern versions of Windows are also capable of natively booting
from iSCSI devices through a mechanism called iSCS/ Boot. The boot loader (Winload.exe) contains a
minimalistic network stack conforming to the Universal Network Device Interface (UNDI) standard,
which allows compatible NIC ROMs to respond to Interrupt 13h (the legacy BIOS disk I/O interrupt)
and convert the requests to network 1/0. On EFI systems, the network interface driver provided by the
manufacturer is used instead, and EFI Device APIs are used instead of interrupts.

Finally, to know the location, path, and authentication information for the remote disk, the boot
loader also reads an iSCSI Boot Firmware Table (iBFT) that must be present in physical memory (typi-
cally exposed through ACPI). Additionally, Windows Setup also has the capability of reading this table
to determine bootable iSCSI devices and allow direct installation on such a device, such that no imag-
ing is required. Combined with the Microsoft iSCSI Initiator, this is all that's required for Windows to
boot from iSCSI, as shown in Figure 13-3.

Pre-boot | Windows
| iSCS| Initiator |
| Int13 |
n — = | TCPIP |
Table parmeer | NDIS |
NIC | NDIS miniport |
| NIC |

I:l Vendor I:l Microsoft iSCSI I:l Microsoft Windows

FIGURE 13-3 iSCSI boot architecture

Initializing the Kernel and Executive Subsystems

When Winload calls Ntoskrnl, it passes a data structure called the loader parameter block that
contains the system and boot partition paths, a pointer to the memory tables Winload generated to
describe the physical memory on the system, a physical hardware tree that is later used to build the
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volatile HARDWARE registry hive, an in-memory copy of the SYSTEM registry hive, and a pointer to
the list of boot drivers Winload loaded, as well as various other information related to the boot pro-
cessing performed until this point.

EXPERIMENT: Loader Parameter Block

While booting, the kernel keeps a pointer to the loader parameter block in the KeLoaderBlock
variable. The kernel discards the parameter block after the first boot phase, so the only way to
see the contents of the structure is to attach a kernel debugger before booting and break at
the initial kernel debugger breakpoint. If you are able to do so, you can use the dt command to
dump the block, as shown:

0: kd> dt
+0x000
+0x004
+0x008
+0x00c
+0x010
+0x018
+0x020
+0x028
+0x02c
+0x030
+0x034
+0x038
+0x03c
+0x040
+0x044
+0x048
+0x04c
+0x050
+0x054

+0x058
+0x05¢
+0x060
+0x064
+0x068
+0x074

poi(nt!KeLoaderBlock) nt!_LOADER_PARAMETER_BLOCK

OsMajorVersion HO)

OsMinorVersion 1

Size : 0x88

Reserved 0

LoadOrderListHead : _LIST_ENTRY [ 0x8085b4c8 - 0x80869c70 ]

MemoryDescriptorListHead : _LIST_ENTRY [ 0x80a00000 - 0x80a00de8 ]

BootDriverListHead : _LIST_ENTRY [ 0x80860d10 - 0x8085ebal ]

KernelStack : 0x88e7c000

Prcb : 0

Process H0]

Thread 1 0x88e64800

RegistrylLength 1 0x2940000

RegistryBase : 0x80adf000 Void

ConfigurationRoot : 0x8082d450 _CONFIGURATION_COMPONENT_DATA

ArcBootDeviceName : 0x8082d9a0 "multi(0)disk(0)rdisk(0)partition(4)"

ArcHalDeviceName : 0x8082d788 "multi(0)disk(0)rdisk(0)partition(4)"

NtBootPathName : 0x8082d828 '"\Windows\"

NtHaTlPathName : 0x80826358 "\"

LoadOptions : 0x8080elb0 "NOEXECUTE=ALWAYSON DEBUGPORT=COM1
BAUDRATE=115200"

N1sData : 0x808691e0 _NLS_DATA_BLOCK

ArcDiskInformation : 0x80821408 _ARC_DISK_INFORMATION

OemFontFile : 0x84a551d0 Void

Extension : 0x8082d9d8 _LOADER_PARAMETER_EXTENSION

u ! <unnamed-tag>

FirmwareInformation : _FIRMWARE_INFORMATION_LOADER_BLOCK

Additionally, the /loadermemorylist command can be used on the MemoryDescriptorListHead
field to dump the physical memory ranges:

0: kd> !Toadermemorylist 0x80a00000
Base Length Type

1 00000001 HALCachedMemory

2 00000004 HALCachedMemory

4a32 00000023 N1sData
4a55 00000002 BootDriver
4a57 00000026 BootDriver
4a7d 00000014 BootDriver
4a91 0000016f Free
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4c00 0001b3f0 Free

1fffo 00000001 FirmwarePermanent
1fffl 00000002 FirmwarePermanent
1fff3 00000001 FirmwarePermanent
1fff4 0000000b FirmwarePermanent
1ffff 00000001 FirmwarePermanent
£d000 00000800 FirmwarePermanent
fec00 00000001 FirmwarePermanent
fee00 00000001 FirmwarePermanent
ffc00 00000400 FirmwarePermanent

Summary

Memory Type Pages

Free 0001bc50 ( 113744)
LoadedProgram 0000013d ( 317)
FirmwareTemporary  000006dd ¢ 1757)
FirmwarePermanent 00000c37 ( 3127)
OsloaderHeap 0000022a ( 554)
SystemCode 000005dc ( 1500)
BootDriver 00000968 ( 2408)
RegistryData 00002940 ( 10560)
MemoryData 00000035 ¢ 53)
N1sData 00000023 ¢ 35)
HALCachedMemory 0000001e ( 30)
Total 00020bc5 ( 134085) = ~523MB

Ntoskrnl then begins phase 0, the first of its two-phase initialization process (phase 1 is the sec-
ond). Most executive subsystems have an initialization function that takes a parameter that identifies
which phase is executing.

During phase 0, interrupts are disabled. The purpose of this phase is to build the rudimentary
structures required to allow the services needed in phase 1 to be invoked. Ntoskrnl’s main func-
tion calls KiSystemStartup, which in turn calls HallnitializeProcessor and KilnitializeKernel for each
CPU. KilnitializeKernel, if running on the boot CPU, performs systemwide kernel initialization, such as
initializing internal lists and other data structures that all CPUs share. It also checks whether virtualiza-
tion was specified as a BCD option (hypervisorlaunchtype), and whether the CPU supports hardware
virtualization technology. The first instance of KilnitializeKernel then calls the function responsible for
orchestrating phase 0, InitBootProcessor, while subsequent processors only call HallnitSystem.

InitBootProcessor starts by initializing the pool look-aside pointers for the initial CPU and by check-
ing for and honoring the BCD burnmemory boot option, where it discards the amount of physical
memory the value specifies. It then performs enough initialization of the NLS files that were loaded
by Winload (described earlier) to allow Unicode to ANSI and OEM translation to work. Next, it contin-
ues by calling the HAL function HallnitSystem, which gives the HAL a chance to gain system control
before Windows performs significant further initialization. One responsibility of HallnitSystem is to
prepare the system interrupt controller of each CPU for interrupts and to configure the interval clock
timer interrupt, which is used for CPU time accounting. (See the section "Quantum Accounting” in
Chapter 5, “Processes, Threads, and Jobs,” in Part 1 for more on CPU time accounting.)
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When HallnitSystem returns control, InitBootProcessor proceeds by computing the reciprocal for
timer expiration. Reciprocals are used for optimizing divisions on most modern processors. They can
perform multiplications faster, and because Windows must divide the current 64-bit time value in or-
der to find out which timers need to expire, this static calculation reduces interrupt latency when the
clock interval fires. InitBootProcessor then continues by setting up the system root path and search-
ing the kernel image for the location of the crash message strings it displays on blue screens, caching
their location to avoid looking up the strings during a crash, which could be dangerous and unreli-
able. Next, InitBootProcessor initializes the quota functionality part of the process manager and reads
the control vector. This data structure contains more than 150 kernel-tuning options that are part of
the HKLM\SYSTEM\CurrentControlSet\Control registry key, including information such as the licensing
data and version information for the installation.

InitBootProcessor is now ready to call the phase 0 initialization routines for the executive, Driver
Verifier, and the memory manager. These components perform the following initialization steps:

1. The executive initializes various internal locks, resources, lists, and variables and validates that
the product suite type in the registry is valid, discouraging casual modification of the registry
in order to "upgrade” to an SKU of Windows that was not actually purchased. This is only one
of the many such checks in the kernel.

2. Driver Verifier, if enabled, initializes various settings and behaviors based on the current state
of the system (such as whether safe mode is enabled) and verification options. It also picks
which drivers to target for tests that target randomly chosen drivers.

3. The memory manager constructs page tables and internal data structures that are necessary
to provide basic memory services. It also builds and reserves an area for the system file cache
and creates memory areas for the paged and nonpaged pools (described in Chapter 10). The
other executive subsystems, the kernel, and device drivers use these two memory pools for
allocating their data structures.

Next, InitBootProcessor calls HallnitializeBios to set up the BIOS emulation code part of the HAL.
This code is used both on real BIOS systems as well as on EFl systems to allow access (or to emulate
access) to 16-bit real mode interrupts and memory, which are used mainly by Bootvid to display
the early VGA boot screen and bugcheck screen. After the function returns, the kernel initializes
the Bootvid library and displays early boot status messages by calling InbvEnableBootDriver and
InbvDriverinitailize.

At this point, InitBootProcessor enumerates the boot-start drivers that were loaded by Winload
and calls DbglLoadlmageSymbols to inform the kernel debugger (if attached) to load symbols for
each of these drivers. If the host debugger has configured the break on symbol load option, this will
be the earliest point for a kernel debugger to gain control of the system. InitBootProcessor now calls
HvlinitSystem, which attempts to connect to the hypervisor in case Windows might be running inside
a Hyper-V host system’s child partition. When the function returns, it calls Headless/nit to initialize the
serial console if the machine was configured for Emergency Management Services (EMS).

Next, InitBootProcessor builds the versioning information that will be used later in the boot pro-
cess, such as the build number, service pack version, and beta version status. Then it copies the NLS
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tables that Winload previously loaded into paged pool, re-initializes them, and creates the kernel
stack trace database if the global flags specify creating one. (For more information on the global
flags, see Chapter 3 in Part 1.)

Finally, InitBootProcessor calls the object manager, security reference monitor, process manager,
user-mode debugging framework, and the Plug and Play manager. These components perform the
following initialization steps:

1. During the object manager initialization, the objects that are necessary to construct the object
manager namespace are defined so that other subsystems can insert objects into it. A handle
table is created so that resource tracking can begin.

2. The security reference monitor initializes the token type object and then uses the object to
create and prepare the first local system account token for assignment to the initial process.
(See Chapter 6, “Security,” in Part 1 for a description of the local system account.)

3. The process manager performs most of its initialization in phase 0, defining the process and
thread object types and setting up lists to track active processes and threads. The process
manager also creates a process object for the initial process and names it /dle. As its last step,
the process manager creates the System process and a system thread to execute the routine
Phasellnitialization. This thread doesn't start running right away because interrupts are still
disabled.

4. The user-mode debugging framework creates the definition of the debug object type that is
used for attaching a debugger to a process and receiving debugger events. For more informa-
tion on user-mode debugging, see Chapter 3 in Part 1.

5. The Plug and Play manager’s phase 0 initialization then takes place, which involves simply
initializing an executive resource used to synchronize access to bus resources.

When control returns to KilnitializeKernel, the last step is to allocate the DPC stack for the current
processor and the I/O privilege map save area (on x86 systems only), after which control proceeds to
the Idle loop, which then causes the system thread created in step 3 of the previous process descrip-
tion to begin executing phase 1. (Secondary processors wait to begin their initialization until step 8 of
phase 1, described in the following list.)

Phase 1 consists of the following steps:

1. PhasellnitializationDiscard, which, as the name implies, discards the code that is part of the
INIT section of the kernel image in order to preserve memory.

2. The initialization thread sets its priority to 31, the highest possible, in order to prevent
preemption.

3. The NUMA/group topology relationships are created, in which the system tries to come up
with the most optimized mapping between logical processors and processor groups, taking
into account NUMA localities and distances, unless overridden by the relevant BCD settings.
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10.

11.

12.

13.

14.

15.

16.

17.

18.

HallnitSystem prepares the system to accept interrupts from devices and to enable interrupts.

The boot video driver is called, which in turn displays the Windows startup screen, which by
default consists of a black screen and a progress bar. If the quietboot boot option was used,
this step will not occur.

The kernel builds various strings and version information, which are displayed on the boot
screen through Bootvid if the sos boot option was enabled. This includes the full version infor-
mation, number of processors supported, and amount of memory supported.

The power manager's initialization is called.

The system time is initialized (by calling HalQueryRealTimeClock) and then stored as the time
the system booted.

On a multiprocessor system, the remaining processors are initialized by KeStartAllProcessors
and HalAllProcessorsStarted. The number of processors that will be initialized and supported
depends on a combination of the actual physical count, the licensing information for the
installed SKU of Windows, boot options such as numproc and onecpu, and whether dynamic
partitioning is enabled (server systems only). After all the available processors have initialized,
the affinity of the system process is updated to include all processors.

The object manager creates the namespace root directory (\), \ObjectTypes directory, and the
DOS device name mapping directory (\Global??). It then creates the \DosDevices symbolic link
that points at the Windows subsystem device name mapping directory.

The executive is called to create the executive object types, including semaphore, mutex,
event, and timer.

The /O manager is called to create the I/O manager object types, including device, driver,
controller, adapter, and file objects.

The kernel debugger library finalizes initialization of debugging settings and parameters if the
debugger has not been triggered prior to this point.

The transaction manager also creates its object types, such as the enlistment, resource man-
ager, and transaction manager types.

The kernel initializes scheduler (dispatcher) data structures and the system service dispatch
table.

The user-mode debugging library (Dbgk) data structures are initialized.

If Driver Verifier is enabled and, depending on verification options, pool verification is en-
abled, object handle tracing is started for the system process.

The security reference monitor creates the \Security directory in the object manager
namespace and initializes auditing data structures if auditing is enabled.
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19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

The \SystemRoot symbolic link is created.

The memory manager is called to create the \Device\PhysicalMemory section object and the
memory manager’s system worker threads (which are explained in Chapter 10).

NLS tables are mapped into system space so that they can be easily mapped by user-mode
processes.

Ntdll.dll is mapped into the system address space.

The cache manager initializes the file system cache data structures and creates its worker
threads.

The configuration manager creates the \Registry key object in the object manager namespace
and opens the in-memory SYSTEM hive as a proper hive file. It then copies the initial hardware
tree data passed by Winload into the volatile HARDWARE hive.

The high-resolution boot graphics library initializes, unless it has been disabled through the
BCD or the system is booting headless.

The errata manager initializes and scans the registry for errata information, as well as the INF
(driver installation file, described in Chapter 8) database containing errata for various drivers.

Superfetch and the prefetcher are initialized.

The Store Manager is initialized.

The current time zone information is initialized.
Global file system driver data structures are initialized.

Phase 1 of debugger-transport-specific information is performed by calling the KdDebugger-
Initializel routine in the registered transport, such as Kdcom.dll.

The Plug and Play manager calls the Plug and Play BIOS.

The advanced local procedure call (ALPC) subsystem initializes the ALPC port type and ALPC
waitable port type objects. The older LPC objects are set as aliases.

If the system was booted with boot logging (with the BCD bootlog option), the boot log file is
initialized. If the system was booted in safe mode, a string is displayed on the boot screen with
the current safe mode boot type.

The executive is called to execute its second initialization phase, where it configures part of
the Windows licensing functionality in the kernel, such as validating the registry settings that
hold license data. Also, if persistent data from boot applications is present (such as memory
diagnostic results or resume from hibernation information), the relevant log files and informa-
tion are written to disk or to the registry.
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36.

37.

38.

39.

40.

41.

42,

43.

44.

45.

46.

The MiniNT/WinPE registry keys are created if this is such a boot, and the NLS object directory
is created in the namespace, which will be used later to host the section objects for the various
memory-mapped NLS files.

The power manager is called to initialize again. This time it sets up support for power requests,
the ALPC channel for brightness notifications, and profile callback support.

The I/O manager initialization now takes place. This stage is a complex phase of system
startup that accounts for most of the boot time.

The /O manager first initializes various internal structures and creates the driver and device
object types. It then calls the Plug and Play manager, power manager, and HAL to begin

the various stages of dynamic device enumeration and initialization. (Because this process is
complex and specific to the I/O system, we cover the details in Chapter 8.) Then the Windows
Management Instrumentation (WMI) subsystem is initialized, which provides WMI support
for device drivers. (See the section "Windows Management Instrumentation” in Chapter 4 in
Part 1 for more information.) This also initializes Event Tracing for Windows (ETW). Next, all
the boot-start drivers are called to perform their driver-specific initialization, and then the
system-start device drivers are loaded and initialized. (Details on the processing of the driver
load control information on the registry are also covered in Chapter 8.) Finally, the Windows
subsystem device names are created as symbolic links in the object manager’s namespace.

The transaction manager sets up the Windows software trace preprocessor (WPP) and ETW
and initializes with WMI. (ETW and WMI are described in Chapter 4 in Part 1.)

Now that boot-start and system-start drivers are loaded, the errata manager loads the INF
database with the driver errata and begins parsing it, which includes applying registry PCI
configuration workarounds.

If the computer is booting in safe mode, this fact is recorded in the registry.

Unless explicitly disabled in the registry, paging of kernel-mode code (in Ntoskrnl and drivers)
is enabled.

The configuration manager makes sure that all processors on an SMP system are identical in
terms of the features that they support; otherwise, it crashes the system.

On 32-bit systems, VDM (Virtual Dos Machine) support is initialized, which includes determin-
ing whether the processor supports Virtual Machine Extensions (VME).

The process manager is called to set up rate limiting for jobs, initialize the static environment
for protected processes, and look up the various system-defined entry points in the user-
mode system library (Ntdll.dll).

The power manager is called to finalize its initialization.
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47. The rest of the licensing information for the system is initialized, including caching the current
policy settings stored in the registry.

48. The security reference monitor is called to create the Command Server Thread that commu-
nicates with LSASS. (See the section “Security System Components” in Chapter 6 in Part 1 for
more on how security is enforced in Windows.)

49. The Session Manager (Smss) process (introduced in Chapter 2, “System Architecture,” in Part 1)
is started. Smss is responsible for creating the user-mode environment that provides the vis-
ible interface to Windows—its initialization steps are covered in the next section.

50. The TPM boot entropy values are queried. These values can be queried only once per boot,
and normally, the TPM system driver should have queried them by now, but if this driver had
not been running for some reason (perhaps the user disabled it), the unqueried values would
still be available. Therefore, the kernel manually queries them too to avoid this situation, and
in normal scenarios, the kernel’'s own query should fail.

51. All the memory used up by the loader parameter block and all its references is now freed.

As a final step before considering the executive and kernel initialization complete, the phase 1
initialization thread waits for the handle to the Session Manager process with a timeout value of 5
seconds. If the Session Manager process exits before the 5 seconds elapse, the system crashes with a
SESSIONS_INITIALIZATION_FAILED stop code.

If the 5-second wait times out (that is, if 5 seconds elapse), the Session Manager is assumed to have
started successfully, and the phase 1 initialization function calls the memory manager’s zero page
thread function (explained in Chapter 10). Thus, this system thread becomes the zero page thread for
the remainder of the life of the system.

Smss, Csrss, and Wininit

Smss is like any other user-mode process except for two differences. First, Windows considers Smss
a trusted part of the operating system. Second, Smss is a native application. Because it's a trusted
operating system component, Smss can perform actions few other processes can perform, such as
creating security tokens. Because it's a native application, Smss doesn’t use Windows APIs—it uses
only core executive APIs known collectively as the Windows native API. Smss doesn’t use the Win32
APIs because the Windows subsystem isn’t executing when Smss launches. In fact, one of Smss’s first
tasks is to start the Windows subsystem.

Smss then calls the configuration manager executive subsystem to finish initializing the registry,
fleshing the registry out to include all its keys. The configuration manager is programmed to know
where the core registry hives are stored on disk (excluding hives corresponding to user profiles), and it
records the paths to the hives it loads in the HKLM\SYSTEM\CurrentControlSet\Control\hivelist key.

The main thread of Smss performs the following initialization steps:

1. Marks itself as a critical process and its main thread as a critical thread. As discussed in Chap-
ter 5 in Part 1, this will cause the kernel to crash the system if Smss quits unexpectedly. Smss
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10.

11.

12.

also enables the automatic affinity update mode to support dynamic processor addition. (See
Chapter 5 in Part 1 for more information.)

Creates protected prefixes for the mailslot and named pipe file system drivers, creating privi-
leged paths for administrators and service accounts to communicate through those paths. See
Chapter 7, "Networking,” in Part 1 for more information.

Calls Smpinit, which tunes the maximum concurrency level for Smss, meaning the maximum
number of parallel sessions that will be created by spawning copies of Smss into other ses-
sions. This is at least four and at most the number of active CPUs.

Smplnit then creates an ALPC port object (\SmApiPort) to receive client requests (such as to
load a new subsystem or create a session).

Smplnit calls SmpLoadDataFromRegistry, which starts by setting up the default environment
variables for the system, and sets the SAFEBOOT variable if the system was booted in safe
mode.

SmpLoadDataFromRegistry calls SmplnitializeDosDevices to define the symbolic links for MS-
DOS device names (such as COM1 and LPT1).

SmpLloadDataFromRegistry creates the \Sessions directory in the object manager’s namespace
(for multiple sessions).

SmpLoadDataFromRegistry runs any programs defined in HKLM\SYSTEM\CurrentControlSet\
Control\Session Manager\BootExecute with SmpExecuteCommand. Typically, this value con-
tains one command to run Autochk (the boot-time version of Chkdsk).

SmpLoadDataFromRegistry calls SmpProcessFileRenames to perform delayed file rename and
delete operations as directed by HKLM\SYSTEM\CurrentControlSet\Control\Session Man-
ager\PendingFileRenameOperations and HKLM\SYSTEM\CurrentControlSet\Control\Session
Manager\PendingFileRenameOperations2.

SmpLoadDataFromRegistry calls SmpCreatePagingFiles to create additional paging files.
Paging file configuration is stored under HKLM\SYSTEM\CurrentControlSet\Control\Session
Manager\Memory Management\PagingFiles.

SmpLoadDataFromRegistry initializes the registry by calling the native function Ntinitialize-
Registry. The configuration manager builds the rest of the registry by loading the registry
hives for the HKLM\SAM, HKLM\SECURITY, and HKLM\SOFTWARE keys. Although HKLM\
SYSTEM\CurrentControlSet\Control\hivelist locates the hive files on disk, the configuration
manager is coded to look for them in \Windows\System32\Config.

SmpLoadDataFromRegistry calls SmpCreateDynamicEnvironmentVariables to add system en-
vironment variables that are defined in HKLM\SYSTEM\CurrentControlSet\Session Manager\-
Environment, as well as processor-specific environment variables such as NUMBER_
PROCESSORS, PROCESSOR_ARCHITECTURE, and PROCESSOR_LEVEL.
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13.

14.

15.

16.

17.

18.

19.

20.

SmpLoadDataFromRegistry runs any programs defined in HKLM\SYSTEM\CurrentControlSet\
Control\Session Manager\SetupExecute with SmpExecuteCommand. Typically, this value is set
only if Windows is being booted as part of the second stage of installation and Setupcl.exe is
the default value.

SmpLoadDataFromRegistry calls SmpConfigureSharedSessionData to initialize the list of sub-
systems that will be started in each session (both immediately and deferred) as well as the
Session 0 initialization command (which, by default, is to launch the Wininit.exe process). The
initialization command can be overridden by creating a string value called SOInitialCommand
in HKLM\SYSTEM\CurrentControlSet\Control\Session Manager and setting it as the path to
another program.

SmpLoadDataFromRegistry calls SmplnitializeKnownDlls to open known DLLs, and creates
section objects for them in the \Knowndlls directory of the object manager namespace. The
list of DLLs considered known is located in HKLM\SYSTEM\CurrentControlSet\Control\Session
Manager\KnownDLLs, and the path to the directory in which the DLLs are located is stored in
the DlIDirectory value of the key. On 64-bit systems, 32-bit DLLs used as part of Wow64 are
stored in the DIIDirectory32 value.

Finally, SmpLoadDataFromRegistry calls SmpTranslateSystemPartitionInformation to convert
the SystemPartition value stored in HKLM\SYSTEM\Setup, which is stored in native NT object
manager path format, to a volume drive letter stored in the BootDir value. Among other com-
ponents, Windows Update uses this registry key to figure out what the system volume is.

At this point, SmpLoadDataFromRegistry returns to Smpinit, which returns to the main thread
entry point. Smss then creates the number of initial sessions that were defined (typically, only
one, session 0, but you can change this number through the NumberOfinitialSessions registry
value in the Smss registry key mentioned earlier) by calling SmpCreatelnitialSession, which
creates an Smss process for each user session. This function’s main job is to call SmpStartCsr to
start Csrss in each session.

As part of Csrss's initialization, it loads the kernel-mode part of the Windows subsystem
(Win32k.sys). The initialization code in Win32k.sys uses the video driver to switch the screen to
the resolution defined by the default profile, so this is the point at which the screen changes
from the VGA mode the boot video driver uses to the default resolution chosen for the
system.

Meanwhile, each spawned Smss in a different user session starts the other subsystem pro-
cesses, such as Psxss if the Subsystem for Unix-based Applications feature was installed. (See
Chapter 3 in Part 1 for more information on subsystem processes.)

The first Smss from session 0 executes the Session 0 initialization command (described in step
14), by default launching the Windows initialization process (Wininit). Other Smss instances
start the interactive logon manager process (Winlogon), which, unlike Wininit, is hardcoded.
The startup steps of Wininit and Winlogon are described shortly.
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Pending File Rename Operations

The fact that executable images and DLLs are memory-mapped when they are used makes it
impossible to update core system files after Windows has finished booting (unless hotpatching
technology is used, which is only for Microsoft patches to the operating system). The Move-
FileEx Windows APl has an option to specify that a file move be delayed until the next boot.
Service packs and hotfixes that must update in-use memory-mapped files install replacement
files onto a system in temporary locations and use the MoveFileEx APl to have them replace
otherwise in-use files. When used with that option, MoveFileEx simply records commands in the
PendingFileRenameOperations and PendingFileRenameOperations2 keys under HKLM\SYSTEM\
CurrentControlSet\Control\Session Manager. These registry values are of type MULTI_SZ, where
each operation is specified in pairs of file names: the first file name is the source location, and
the second is the target location. Delete operations use an empty string as their target path.
You can use the Pendmoves utility from Windows Sysinternals (http.//www.microsoft.com/
technet/sysinternals) to view registered delayed rename and delete commands.

After performing these initialization steps, the main thread in Smss waits forever on the pro-
cess handle of Winlogon, while the other ALPC threads wait for messages to create new sessions or
subsystems. If either Wininit or Csrss terminate unexpectedly, the kernel crashes the system because
these processes are marked as critical. If Winlogon terminates unexpectedly, the session associated
with it is logged off.

Wininit then performs its startup steps, such as creating the initial window station and desktop ob-
jects. It also configures the Session 0 window hook, which is used by the Interactive Services Detection
service (UlODetect.exe) to provide backward compatibility with interactive services. (See Chapter 4 in
Part 1 for more information on services.) Wininit then creates the service control manager (SCM) pro-
cess (%SystemRoot%\System32\Services.exe), which loads all services and device drivers marked for
auto-start, and the Local Security Authority subsystem (LSASS) process (%SystemRoot%\System32\
Lsass.exe). Finally, it loads the local session manager (%SystemRoot%\System32\Lsm.exe). On session
1 and beyond, Winlogon runs instead and loads the registered credential providers for the system
(by default, the Microsoft credential provider supports password-based and smartcard-based logons)
into a child process called LogonUl (%SystemRoot%\System32\Logonui.exe), which is responsible for
displaying the logon interface. (For more details on the startup sequence for Wininit, Winlogon, and
LSASS, see the section "Winlogon Initialization” in Chapter 6 in Part 1.)

After the SCM initializes the auto-start services and drivers and a user has successfully logged on
at the console, the SCM deems the boot successful. The registry’s last known good control set (as
indicated by HKLM\SYSTEM\Select\LastKknownGood) is updated to match \CurrentControlSet.
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Note Because noninteractive servers might never have an interactive logon, they might
not get LastKknownGood updated to reflect the control set used for a successful boot. You
can override the definition of a successful boot by setting HKLM\SOFTWARE\Microsoft\
Windows NT\CurrentVersion\Winlogon\ReportBootOk to 0, writing a custom boot verifica-
tion program that calls the NotifyBootConfigStatus Windows APl when a boot is successful,
and entering the path to the verification program in HKLM\SYSTEM\CurrentControlSet\
Control\BootVerificationProgram.

After launching the SCM, Winlogon waits for an interactive logon notification from the credential
provider. When it receives a logon and validates the logon (a process for which you can find more
information in the section "User Logon Steps” in Chapter 6 in Part 1), Winlogon loads the registry
hive from the profile of the user logging on and maps it to HKCU. It then sets the user’s environment
variables that are stored in HKCU\Environment and notifies the Winlogon notification packages regis-
tered in HKLM\SOFTWARE\Microsoft\Windows NT\CurrentVersion\Winlogon\Notify that a logon has
occurred.

Winlogon next starts the shell by launching the executable or executables specified in HKLM\
SOFTWARE\Microsoft\Windows NT\CurrentVersion\WinLogon\Userinit (with multiple executables
separated by commas) that by default points at \Windows\System32\Userinit.exe. Userinit.exe per-
forms the following steps:

1. Processes the user scripts specified in HKCU\Software\Policies\Microsoft\Windows\System\
Scripts and the machine logon scripts in HKLM\SOFTWARE\Policies\Microsoft\Windows\
System\Scripts. (Because machine scripts run after user scripts, they can override user settings.)

2. If Group Policy specifies a user profile quota, starts %SystemRoot%\System32\Proquota.exe to
enforce the quota for the current user.

3. Launches the comma-separated shell or shells specified in HKCU\Software\Microsoft\Windows
NT\CurrentVersion\Winlogon\Shell. If that value doesn't exist, Userinit.exe launches the shell
or shells specified in HKLM\SOFTWARE\Microsoft\Windows NT\CurrentVersion\Winlogon\
Shell, which is by default Explorer.exe.

Winlogon then notifies registered network providers that a user has logged on. The Microsoft
network provider, Multiple Provider Router (%SystemRoot%\System32\Mpr.dll), restores the user’s
persistent drive letter and printer mappings stored in HKCU\Network and HKCU\Printers, respectively.
Figure 13-4 shows the process tree as seen in Process Monitor after a logon (using its boot logging
capability). Note the Smss processes that are dimmed (meaning that they have since exited). These
refer to the spawned copies that initialized each session.
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FIGURE 13-4 Process tree during logon

ReadyBoot

Windows uses the standard logical boot-time prefetcher (described in Chapter 10) if the system has
less than 700 MB of memory, but if the system has 700 MB or more of RAM, it uses an in-RAM cache
to optimize the boot process. The size of the cache depends on the total RAM available, but it is large
enough to create a reasonable cache and yet allow the system the memory it needs to boot smoothly.

After every boot, the ReadyBoost service (see Chapter 10 for information on ReadyBoost) uses idle
CPU time to calculate a boot-time caching plan for the next boot. It analyzes file trace information
from the five previous boots and identifies which files were accessed and where they are located on
disk. It stores the processed traces in %SystemRoot%\Prefetch\Readyboot as .fx files and saves the
caching plan under HKLM\SYSTEM\CurrentControlSet\Services\Rdyboost\Parameters in REG_BINARY
values named for internal disk volumes they refer to.
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The cache is implemented by the same device driver that implements ReadyBoost caching
(Ecache.sys), but the cache’s population is guided by the boot plan previously stored in the regis-
try. Although the boot cache is compressed like the ReadyBoost cache, another difference between
ReadyBoost and ReadyBoot cache management is that while in ReadyBoot mode, the cache is not
encrypted. The ReadyBoost service deletes the cache 50 seconds after the service starts, or if other
memory demands warrant it, and records the cache’s statistics in HKLM\SYSTEM\CurrentControlSet\
Services\Ecache\Parameters\ReadyBootStats, as shown in Figure 13-5.
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FIGURE 13-5 ReadyBoot statistics

Images That Start Automatically

In addition to the Userinit and Shell registry values in Winlogon'’s key, there are many other registry
locations and directories that default system components check and process for automatic process
startup during the boot and logon processes. The Msconfig utility (%SystemRoot%\System32\
Msconfig.exe) displays the images configured by several of the locations. The Autoruns tool, which
you can download from Sysinternals and that is shown in Figure 13-6, examines more locations than
Msconfig and displays more information about the images configured to automatically run. By de-
fault, Autoruns shows only the locations that are configured to automatically execute at least one im-
age, but selecting the Include Empty Locations entry on the Options menu causes Autoruns to show
all the locations it inspects. The Options menu also has selections to direct Autoruns to hide Microsoft
entries, but you should always combine this option with Verify Image Signatures; otherwise, you risk
hiding malicious programs that include false information about their company name information.
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FIGURE 13-6 The Autoruns tool available from Sysinternals

2@l EXPERIMENT: Autoruns

Many users are unaware of how many programs execute as part of their logon. Original equip-
ment manufacturers (OEMs) often configure their systems with add-on utilities that execute in
the background using registry values or file system directories processed for automatic execu-
tion and so are not normally visible. See what programs are configured to start automatically
on your computer by running the Autoruns utility from Sysinternals. Compare the list shown

in Autoruns with that shown in Msconfig and identify any differences. Then ensure that you
understand the purpose of each program.

Troubleshooting Boot and Startup Problems

This section presents approaches to solving problems that can occur during the Windows startup

process as a result of hard disk corruption, file corruption, missing files, and third-party driver bugs.

First we describe three Windows boot-problem recovery modes: last known good, safe mode, and

Windows Recovery Environment (WinRE). Then we present common boot problems, their causes, and

approaches to solving them. The solutions refer to last known good, safe mode, WinRE, and other
tools that ship with Windows.
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Last Known Good

Last known good (LKG) is a useful mechanism for getting a system that crashes during the boot
process back to a bootable state. Because the system’s configuration settings are stored in HKLM\
SYSTEM\CurrentControlSet\Control and driver and service configuration is stored in HKLM\SYSTEM\
CurrentControlSet\Services, changes to these parts of the registry can render a system unbootable.
For example, if you install a device driver that has a bug that crashes the system during the boot, you
can press the F8 key during the boot and select last known good from the resulting menu. The system
marks the control set that it was using to boot the system as failed by setting the Failed value of
HKLM\SYSTEM\Select and then changes HKLM\SYSTEM\Select\Current to the value stored in HKLM\
SYSTEM\Select\LastKnownGood. It also updates the symbolic link HKLM\SYSTEM\CurrentControlSet
to point at the LastknownGood control set. Because the new driver’s key is not present in the Services
subkey of the LastKknownGood control set, the system will boot successfully.

Safe Mode

Perhaps the most common reason Windows systems become unbootable is that a device driver
crashes the machine during the boot sequence. Because software or hardware configurations can
change over time, latent bugs can surface in drivers at any time. Windows offers a way for an admin-
istrator to attack the problem: booting in safe mode. Safe mode is a boot configuration that consists
of the minimal set of device drivers and services. By relying on only the drivers and services that are
necessary for booting, Windows avoids loading third-party and other nonessential drivers that might
crash.

When Windows boots, you press the F8 key to enter a special boot menu that contains the safe-
mode boot options. You typically choose from three safe-mode variations: Safe Mode, Safe Mode
With Networking, and Safe Mode With Command Prompt. Standard safe mode includes the mini-
mum number of device drivers and services necessary to boot successfully. Networking-enabled safe
mode adds network drivers and services to the drivers and services that standard safe mode includes.
Finally, safe mode with command prompt is identical to standard safe mode except that Windows
runs the Command Prompt application (Cmd.exe) instead of Windows Explorer as the shell when the
system enables GUI mode.

Windows includes a fourth safe mode—Directory Services Restore mode—which is different
from the standard and networking-enabled safe modes. You use Directory Services Restore mode to
boot the system into a mode where the Active Directory service of a domain controller is offline and
unopened. This allows you to perform repair operations on the database or restore it from backup
media. All drivers and services, with the exception of the Active Directory service, load during a
Directory Services Restore mode boot. In cases where you can't log on to a system because of Active
Directory database corruption, this mode enables you to repair the corruption.

Driver Loading in Safe Mode

How does Windows know which device drivers and services are part of standard and networking-
enabled safe mode? The answer lies in the HKLM\SYSTEM\CurrentControlSet\Control\SafeBoot
registry key. This key contains the Minimal and Network subkeys. Each subkey contains more subkeys
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that specify the names of device drivers or services or of groups of drivers. For example, the vga.sys
subkey identifies the VGA display device driver that the startup configuration includes. The VGA
display driver provides basic graphics services for any PC-compatible display adapter. The system uses
this driver as the safe-mode display driver in lieu of a driver that might take advantage of an adapter’s
advanced hardware features but that might also prevent the system from booting. Each subkey under
the SafeBoot key has a default value that describes what the subkey identifies; the vga.sys subkey’s
default value is “Driver”.

The Boot file system subkey has as its default value “Driver Group”. When developers design a
device driver's installation script (.inf file), they can specify that the device driver belongs to a driver
group. The driver groups that a system defines are listed in the List value of the HKLM\SYSTEM\
CurrentControlSet\Control\ServiceGroupOrder key. A developer specifies a driver as a member of
a group to indicate to Windows at what point during the boot process the driver should start. The
ServiceGroupOrder key's primary purpose is to define the order in which driver groups load; some
driver types must load either before or after other driver types. The Group value beneath a driver’s
configuration registry key associates the driver with a group.

Driver and service configuration keys reside beneath HKLM\SYSTEM\CurrentControlSet\Services.
If you look under this key, you'll find the VgaSave key for the VGA display device driver, which you
can see in the registry is a member of the Video Save group. Any file system drivers that Windows
requires for access to the Windows system drive are automatically loaded as if part of the Boot file
system group. Other file system drivers are part of the File system group, which the standard and
networking-enabled safe-mode configurations also include.

When you boot into a safe-mode configuration, the boot loader (Winload) passes an associated
switch to the kernel (Ntoskrnl.exe) as a command-line parameter, along with any switches you've
specified in the BCD for the installation you're booting. If you boot into any safe mode, Winload sets
the safeboot BCD option with a value describing the type of safe mode you select. For standard safe
mode, Winload sets minimal, and for networking-enabled safe mode, it adds network. Winload adds
minimal and sets safebootalternateshell for safe mode with command prompt and dsrepair for Direc-
tory Services Restore mode.

The Windows kernel scans boot parameters in search of the safe-mode switches early during the
boot, during the InitSafeBoot function, and sets the internal variable InitSafeBootMode to a value that
reflects the switches the kernel finds. The kernel writes the InitSafeBootMode value to the registry
value HKLM\SYSTEM\CurrentControlSet\Control\SafeBoot\Option\OptionValue so that user-mode
components, such as the SCM, can determine what boot mode the system is in. In addition, if the
system is booting in safe mode with command prompt, the kernel sets the HKLM\SYSTEM\Current-
ControlSet\Control\SafeBoot\Option\UseAlternateShell value to 1. The kernel records the parameters
that Winload passes to it in the value HKLM\SYSTEM\CurrentControlSet\Control\SystemStartOptions.

When the I/O manager kernel subsystem loads device drivers that HKLM\SYSTEM\Current-
ControlSet\Services specifies, the I/O manager executes the function lopLoadDriver. When the Plug
and Play manager detects a new device and wants to dynamically load the device driver for the
detected device, the Plug and Play manager executes the function PipCallDriverAddDevice. Both
these functions call the function lopSafebootDriverLoad before they load the driver in question.
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lopSafebootDriverLoad checks the value of InitSafeBootMode and determines whether the driver
should load. For example, if the system boots in standard safe mode, lopSafebootDriverLoad looks for
the driver’s group, if the driver has one, under the Minimal subkey. If lopSafebootDriverLoad finds the
driver’s group listed, lopSafebootDriverLoad indicates to its caller that the driver can load. Otherwise,
lopSafebootDriverLoad looks for the driver’s name under the Minimal subkey. If the driver's name is
listed as a subkey, the driver can load. If lopSafebootDriverLoad can't find the driver group or driver
name subkeys, the driver will not be loaded. If the system boots in networking-enabled safe mode,
lopSafebootDriverLoad performs the searches on the Network subkey. If the system doesn't boot in
safe mode, lopSafebootDriverLoad lets all drivers load.

Note An exception exists regarding the drivers that safe mode excludes from a boot:
Winload, rather than the kernel, loads any drivers with a Start value of 0 in their registry
key, which specifies loading the drivers at boot time. Winload doesn’t check the SafeBoot
registry key because it assumes that any driver with a Start value of 0 is required for the
system to boot successfully. Because Winload doesn't check the SafeBoot registry key to
identify which drivers to load, Winload loads all boot-start drivers (and later Ntoskrnl starts
them).

Safe-Mode-Aware User Programs

When the service control manager (SCM) user-mode component (which Services.exe implements)
initializes during the boot process, the SCM checks the value of HKLM\SYSTEM\CurrentControlSet\
Control\SafeBoot\Option\OptionValue to determine whether the system is performing a safe-mode
boot. If so, the SCM mirrors the actions of lopSafebootDriverLoad. Although the SCM processes the
services listed under HKLM\SYSTEM\CurrentControlSet\Services, it loads only services that the appro-
priate safe-mode subkey specifies by name. You can find more information on the SCM initialization
process in the section “Services” in Chapter 4 in Part 1.

Userinit, the component that initializes a user’s environment when the user logs on
(%SystemRoot%\System32\Userinit.exe), is another user-mode component that needs to know
whether the system is booting in safe mode. It checks the value of HKLM\SYSTEM\CurrentControlSet\
Control\SafeBoot\Option\UseAlternateShell. If this value is set, Userinit runs the program specified
as the user’s shell in the value HKLM\SYSTEM\CurrentControlSet\Control\SafeBoot\AlternateShell
rather than executing Explorer.exe. Windows writes the program name Cmd.exe to the AlternateShell
value during installation, making the Windows command prompt the default shell for safe mode with
command prompt. Even though the command prompt is the shell, you can type Explorer.exe at the
command prompt to start Windows Explorer, and you can run any other GUI program from the com-
mand prompt as well.

How does an application determine whether the system is booting in safe mode? By calling the
Windows GetSystemMetrics(SM_CLEANBOOT) function. Batch scripts that need to perform certain
operations when the system boots in safe mode look for the SAFEBOOT_OPTION environment vari-
able because the system defines this environment variable only when booting in safe mode.
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Boot Logging in Safe Mode

When you direct the system to boot into safe mode, Winload hands the string specified by the
bootlog option to the Windows kernel as a parameter, together with the parameter that requests safe
mode. When the kernel initializes, it checks for the presence of the bootlog parameter whether or not
any safe-mode parameter is present. If the kernel detects a boot log string, the kernel records the
action the kernel takes on every device driver it considers for loading. For example, if lopSafeboot-
DriverLoad tells the 1/0 manager not to load a driver, the I/O manager calls lopBootLog to record that
the driver wasn't loaded. Likewise, after lopLoadDriver successfully loads a driver that is part of the
safe-mode configuration, lopLoadDriver calls lopBootLog to record that the driver loaded. You can
examine boot logs to see which device drivers are part of a boot configuration.

Because the kernel wants to avoid modifying the disk until Chkdsk executes, late in the boot pro-
cess, lopBootLog can't simply dump messages into a log file. Instead, lopBootLog records messages
in the HKLM\SYSTEM\CurrentControlSet\BootLog registry value. As the first user-mode component
to load during a boot, the Session Manager (%SystemRoot%\System32\Smss.exe) executes Chkdsk
to ensure the system drives’ consistency and then completes registry initialization by executing the
NtlinitializeRegistry system call. The kernel takes this action as a cue that it can safely open a log file
on the disk, which it does, invoking the function lopCopyBootLogRegistryToFile. This function creates
the file Ntbtlog.txt in the Windows system directory (%SystemRoot%) and copies the contents of the
BootLog registry value to the file. lopCopyBootLogRegistryToFile also sets a flag for lopBootLog that
lets lopBootLog know that writing directly to the log file, rather than recording messages in the regis-
try, is now OK. The following output shows the partial contents of a sample boot log:

Microsoft (R) Windows (R) Version 6.1 (Build 7601)

10 4 2012 09:04:53.375

Loaded driver \SystemRoot\system32\ntkrnlpa.exe

Loaded driver \SystemRoot\system32\hal.d11

Loaded driver \SystemRoot\system32\kdcom.d11

Loaded driver \SystemRoot\system32\mcupdate_GenuineIntel.dl11
Loaded driver \SystemRoot\system32\PSHED.d11

Loaded driver \SystemRoot\system32\BOOTVID.d11

Loaded driver \SystemRoot\system32\CLFS.SYS

Loaded driver \SystemRoot\system32\CI.d11

Loaded driver \SystemRoot\system32\drivers\Wdf01000.sys
Loaded driver \SystemRoot\system32\drivers\WDFLDR.SYS
Loaded driver \SystemRoot\system32\drivers\acpi.sys
Loaded driver \SystemRoot\system32\drivers\WMILIB.SYS
Loaded driver \SystemRoot\system32\drivers\msisadrv.sys
Loaded driver \SystemRoot\system32\drivers\pci.sys
Loaded driver \SystemRoot\system32\drivers\volmgr.sys
Loaded driver \SystemRoot\system32\DRIVERS\compbatt.sys
Loaded driver \SystemRoot\system32\DRIVERS\BATTC.SYS
Loaded driver \SystemRoot\System32\drivers\mountmgr.sys
Loaded driver \SystemRoot\system32\drivers\intelide.sys
Loaded driver \SystemRoot\system32\drivers\PCIIDEX.SYS
Loaded driver \SystemRoot\system32\DRIVERS\pciide.sys
Loaded driver \SystemRoot\System32\drivers\volmgrx.sys
Loaded driver \SystemRoot\system32\drivers\atapi.sys
Loaded driver \SystemRoot\system32\drivers\ataport.SYS
Loaded driver \SystemRoot\system32\drivers\fltmgr.sys
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Loaded driver \SystemRoot\system32\drivers\fileinfo.sys

Did not load driver @battery.inf,%acpi\acpi0003.devicedesck%;Microsoft AC Adapter

Did not load driver @battery.inf,%acpi\pnpOcOa.devicedesc%;Microsoft ACPI-Compliant

Control Method Battery

Did not Toad driver @oem46.inf,%nvidia_g71l.dev_0297.1%;NVIDIA GeForce Go 7950 GTX

Did not load driver @oem5.inf,%nic_mpciex%;Intel(R) PRO/Wireless 3945ABG Network Connection

Did not Toad driver @netb57vx.inf,%bcm5750alcTnahkd%;Broadcom NetXtreme 57xx Gigabit Controller
Did not Toad driver @sdbus.inf,%pci\cc_080501.devicedesc%;SDA Standard Compliant

SD Host Controller

Windows Recovery Environment (WinRE)

Safe mode is a satisfactory fallback for systems that become unbootable because a device driver
crashes during the boot sequence, but in some situations a safe-mode boot won't help the system
boot. For example, if a driver that prevents the system from booting is a member of a Safe group,
safe-mode boots will fail. Another example of a situation in which safe mode won't help the system
boot is when a third-party driver, such as a virus scanner driver, that loads at the boot prevents the
system from booting. (Boot-start drivers load whether or not the system is in safe mode.) Other situ-
ations in which safe-mode boots will fail are when a system module or critical device driver file that is
part of a safe-mode configuration becomes corrupt or when the system drive’s Master Boot Record
(MBR) is damaged.

You can get around these problems by using the Windows Recovery Environment. The Windows
Recovery Environment provides an assortment of tools and automated repair technologies to auto-
matically fix the most common startup problems. It includes five main tools:

m  Startup Repair An automated tool that detects the most common Windows startup prob-
lems and automatically attempts to repair them.

= System Restore Allows restoring to a previous restore point in cases in which you cannot
boot the Windows installation to do so, even in safe mode.

m  System Image Recover Called Complete PC Restore, as well as ASR (Automated System
Recovery), in previous versions of Windows, this restores a Windows installation from a com-
plete backup, not just a system restore point, which might not contain all damaged files and
lost data.

®  Windows Memory Diagnostic Tool Performs memory diagnostic tests that check for signs
of faulty RAM. Faulty RAM can be the reason for random kernel and application crashes and
erratic system behavior.

= Command Prompt For cases where troubleshooting or repair requires manual intervention
(such as copying files from another drive or manipulating the BCD), you can use the command
prompt to have a full Windows shell that can launch almost any Windows program (as long as
the required dependencies can be satisfied)—unlike the Recovery Console on earlier versions
of Windows, which only supported a limited set of specialized commands.
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When you boot a system from the Windows CD or boot disks, Windows Setup gives you the choice
of installing Windows or repairing an existing installation. If you choose to repair an installation, the
system displays a dialog box called System Recovery Options, shown in Figure 13-7.

x

% lse recovery tools that can help fix problems starting Windows.
Select an operating system to repair,

If your operating system isn't listed, dick Load Drivers and then

install drivers for your hard disks.
ating System | Partition Size | Location |
40856 MB (D:) Local Disk

(" Restore your computer using a system image that you created
earlier,

Load Drivers | Next = I

FIGURE 13-7 The System Recovery Options dialog box

Newer versions of Windows also install WinRE to a recovery partition on a clean system installa-
tion. On these systems, you can access WIinRE by using the F8 option to access advanced boot options
during Bootmgr execution. If you see an option Repair Your Computer, your machine has a local hard
disk copy. If for some reason yours does not, you can follow the instructions at the Microsoft WinRE
blog (http://blogs.msdn.com/winre) to install WinRE on the hard disk yourself from your Windows
installation media and Windows Automated Installation Kit (AIK).

If you select the first option, WinRE will then display the dialog box in Figure 13-8, which has the
various recovery options. Choosing the second option, on the other hand, is equivalent to the System
Image Recovery option shown in Figure 13-8.

* System Recovery Options ] 1]

Choose a recovery tool

Operating system: Windows 7 on (D:) Local Disk
5 i

Automatically fix problems that are preventing Windows from starting

System Restore
Restore Windows to an earlier point in time:

5 m I Recove
Recover your computer using a system image you created earlier

Windows Memory Diagnostic
Chedk your computer for memory hardware errors

Y N

Command Prompt
Open a command prompt window

Shut Down | Restart |

FIGURE 13-8 The Advanced System Recovery Options dialog box
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Additionally, if your system failed to boot as the result of damaged files or for any other reason
that Winload can understand, it instructs Bootmgr to automatically start WinRE at the next reboot
cycle. Instead of the dialog box shown in Figure 13-8, the recovery environment will automatically
launch the Startup Repair tool, shown in Figure 13-9.

8 Startup Repair ﬂ

Startup Repair is checking your system for problems...

If problems are found, tup Repair will fix them automatically. Your computer might restart
several times during this Mrocess,

Mo changes will be made to your personal files or information. This might take several minutes.

- ]

Searching for problems. ..

= Back | Iexk = | Cancel I

FIGURE 13-9 The Startup Repair tool

At the end of the scan and repair cycle, the tool will automatically attempt to fix any damage
found, including replacing system files from the installation media. You can click the details link to see

information about the damage that was fixed. For example, in Figure 13-10, the Startup Repair tool
fixed a damaged boot sector.

x|
[

x
Diagrioss and repar Setals:

Repar acton: Boot sector repar
Resuit: Completed successfully, Error code = 0
Tese taken = 171 ms

B
I

L I I.

FIGURE 13-10 Details view of the Startup Repair tool

If the Startup Repair tool cannot automatically fix the damage, or if you cancel the operation, you'll
get a chance to try other methods and the System Recovery Options dialog box will be displayed.
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Boot Status File

Windows uses a boot status file (%SystemRoot%\Bootstat.dat) to record the fact that it has
progressed through various stages of the system life cycle, including boot and shutdown. This
allows the Boot Manager, Windows loader, and the Startup Repair tool to detect abnormal
shutdown or a failure to shut down cleanly and offer the user recovery and diagnostic boot op-
tions, like Last Known Good and Safe Mode. This binary file contains information through which
the system reports the success of the following phases of the system life cycle:

m  Boot (the definition of a successful boot is the same as the one used for determining Last
Known Good status, which was described earlier)

= Shutdown
®  Resume from hibernate or suspend

The boot status file also indicates whether a problem was detected the last time the user
attempted to boot the operating system and the recovery options shown, indicating that
the user has been made aware of the problem and taken action. Runtime Library APIs (Rtl) in
Ntdll.dIl contain the private interfaces that Windows uses to read from and write to the file. Like
the BCD, it cannot be edited by users.

Solving Common Boot Problems

This section describes problems that can occur during the boot process, describing their symptoms,
what caused them, and approaches to solving them. To help you locate a problem that you might
encounter, they are organized according to the place in the boot at which they occur. Note that for
most of these problems, you should be able to simply boot into the Windows Recovery Environment
and allow the Startup Repair tool to scan your system and perform any automated repair tasks.

MBR Corruption
= Symptoms A system that has Master Boot Record (MBR) corruption will execute the BIOS
power-on self test (POST), display BIOS version information or OEM branding, switch to a
black screen, and then hang. Depending on the type of corruption the MBR has experienced,
you might see one of the following messages: “Invalid partition table”, “Error loading operat-
ing system”, or "Missing operating system”.

m  Cause The MBR can become corrupt because of hard-disk errors, disk corruption as a result
of a driver bug while Windows is running, or intentional scrambling as a result of a virus.

m  Resolution Boot into the Windows Recovery Environment, choose the Command Prompt
option, and then execute the bootrec /fixmbr command. This command replaces the execut-
able code in the MBR.
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Boot Sector Corruption

Symptoms Boot sector corruption can look like MBR corruption, where the system hangs
after BIOS POST at a black screen, or you might see the messages “A disk read error occurred”,
“BOOTMGR is missing”, or “ BOOTMGR is compressed” displayed on a black screen.

Cause The boot sector can become corrupt because of hard-disk errors, disk corruption as a
result of a driver bug while Windows is running, or intentional scrambling as a result of a virus.

Resolution Boot into the Windows Recovery Environment, choose the Command Prompt
option, and then execute the bootrec /fixboot command. This command rewrites the boot sec-
tor of the volume that you specify. You should execute the command on both the system and
boot volumes if they are different.

BCD Misconfiguration

Symptom After BIOS POST, you'll see a message that begins “Windows could not start
because of a computer disk hardware configuration problem”, “Could not read from selected
boot disk”, or “Check boot path and disk hardware”.

Cause The BCD has been deleted, become corrupt, or no longer references the boot volume
because the addition of a partition has changed the name of the volume.

Resolution Boot into the Windows Recovery Environment, choose the Command Prompt
option, and then execute the bootrec /scanos and bootrec /rebuildbcd commands. These
commands will scan each volume looking for Windows installations. When they discover an
installation, they will ask you whether they should add it to the BCD as a boot option and
what name should be displayed for the installation in the boot menu. For other kinds of BCD-
related damage, you can also use Bcdedit.exe to perform tasks such as building a new BCD
from scratch or cloning an existing good copy.

System File Corruption

Symptoms There are several ways the corruption of system files—which include executables,
drivers, or DLLs—can manifest. One way is with a message on a black screen after BIOS POST
that says, “Windows could not start because the following file is missing or corrupt”, followed
by the name of a file and a request to reinstall the file. Another way is with a blue screen crash
during the boot with the text, “STOP: 0xC0000135 {Unable to Locate Component}".

Causes The volume on which a system file is located is corrupt or one or more system files
have been deleted or become corrupt.

Resolution Boot into the Windows Recovery Environment, choose the Command Prompt
option, and then execute the chkdsk command. Chkdsk will attempt to repair volume cor-
ruption. If Chkdsk does not report any problems, obtain a backup copy of the system file

in question. One place to check is in the %SystemRoot%\winsxs\Backup directory, in which
Windows places copies of many system files for access by Windows Resource Protection. (See
the "Windows Resource Protection” sidebar.) If you cannot find a copy of the file there, see if

Windows Internals, Sixth Edition, Part 2



you can locate a copy from another system in the network. Note that the backup file must be
from the same service pack or hotfix as the file that you are replacing.

In some cases, multiple system files are deleted or become corrupt, so the repair process can
involve multiple reboots and boot failures as you repair the files one by one. If you believe the system
file corruption to be extensive, you should consider restoring the system from a backup image, such
as one generated by Windows Backup and Restore or from a system restore point.

When you run Backup and Restore (located in the Maintenance folder on the Start menu), you
can generate a System Image Recovery image, which includes all the files on the system and boot
volumes, plus a floppy disk on which it stores information about the system’s disks and volumes. To
restore a system from such an image, boot from the Windows setup media and select the appropriate
option when prompted (or use the recovery environment shown earlier).

If you do not have a backup from which to restore, a last resort is to execute a Windows repair
install: boot from the Windows setup media, and follow the wizard as if you were going to perform a
new installation. The wizard will ask you whether you want to perform a repair or fresh install. When
you tell it that you want to repair, Setup reinstalls all system files, leaving your application data and
registry settings intact.

Windows Resource Protection

To preserve the integrity of the many components involved in the boot process, as well as other
critical Windows files, libraries, and applications, Windows implements a technology called
Windows Resource Protection (WRP). WRP is implemented through access control lists (ACLs)
that protect critical system files on the machine. It is also exposed through an API (located in
%SystemRoot%\System32\Sfc.dll and %SystemRoot%\System32\Sfc_os.dll) that can be accessed
by the Sfc.exe utility to manually check a file for corruption and restore it.

WRP will also protect entire critical folders if required, even locking down the folder so that
it is inaccessible by administrators (without modifying the access control list on the folder). The
only supported way to modify WRP-protected files is through the Windows Modules Installer
service, which can run under the TrustedInstaller account. This service is used for the installation
of patches, service packs, hotfixes, and Windows Update. This account has access to the vari-
ous protected files and is trusted by the system (as its name implies) to modify critical files and
replace them. WRP also protects critical registry keys, and it may even lock entire registry trees
if all the values and subkeys are considered to be critical.

WRP sets the ACL on protected files, directories, or registry keys such that only the Trusted-
Installer account is able to modify or delete these files. Application developers can use the Sfcls-
FileProtected or SfclsKeyProtected APIs to check whether a file or registry key is locked down.

For backward compatibility, certain installers are considered well-known—an application
compatibility shim exists that will suppress the "access denied” error that certain installers would
receive while attempting to modify WRP-protected resources. Instead, the installer receives a
fake “success” code, but the modification isn't made. This virtualization is similar to the User
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Access Control (UAC) virtualization technology discussed in Chapter 6 in Part 1, but it applies to
write operations as well. It applies if the following are true:

m  The application is a legacy application, meaning that it does not contain a manifest file
compatible with the requestedExecutionLevel value set.

= The application is trying to modify a WRP-protected resource (the file or registry key con-
tains the TrustedInstaller SID).

m  The application is being run under an administrator account (always true on systems with
UAC enabled because of automatic installer program detection).

WRP copies files that are needed to restart Windows to the cache directory located at
%SystemRoot%\winsxs\Backup. Critical files that are not needed to restart Windows are not
copied to the cache directory. The size of the cache directory and the list of files copied to the
cache cannot be modified. To recover a file from the cache directory, you can use the System
File Checker (Sfc.exe) tool, which can scan your system for modified protected files and restore
them from a good copy.

System Hive Corruption

m  Symptoms If the System registry hive (which is discussed along with hive files in the section
“The Registry” in Chapter 4 in Part 1) is missing or corrupted, Winload will display the message
“Windows could not start because the following file is missing or corrupt: \WINDOWS\SYS-
TEM32\CONFIG\SYSTEM", on a black screen after the BIOS POST.

m  Causes The System registry hive, which contains configuration information necessary for the
system to boot, has become corrupt or has been deleted.

= Resolution Boot into the Windows Recovery Environment, choose the Command Prompt
option, and then execute the chkdsk command. If the problem is not corrected, obtain a
backup of the System registry hive. Windows makes copies of the registry hives every 12
hours (keeping the immediately previous copy with a .OLD extension) in a folder called
%SystemRoot%\System32\Config\RegBack, so copy the file named System to %SystemRoot%\
System32\Config.

If System Restore is enabled (System Restore is discussed in Chapter 12, “File System”), you can
often obtain a more recent backup of the registry hives, including the System hive, from the most
recent restore point. You can choose System Restore from the Windows Recovery Environment to
restore your registry from the last restore point.

Post-Splash Screen Crash or Hang

= Symptoms Problems that occur after the Windows splash screen displays, the desktop ap-
pears, or you log on fall into this category and can appear as a blue screen crash or a hang,
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where the entire system is frozen or the mouse cursor tracks the mouse but the system is
otherwise unresponsive.

Causes These problems are almost always a result of a bug in a device driver, but they can
sometimes be the result of corruption of a registry hive other than the System hive.

Resolution You can take several steps to try and correct the problem. The first thing you
should try is the last known good configuration. Last known good (LKG), which is described
earlier in this chapter and in the “Services” section of Chapter 4 in Part 1, consists of the
registry control set that was last used to boot the system successfully. Because a control set
includes core system configuration and the device driver and services registration database,
using a version that does not reflect changes or newly installed drivers or services might avoid
the source of the problem. You access last known good by pressing the F8 key early in the
boot process to access the same menu from which you can boot into safe mode.

As stated earlier in the chapter, when you boot into LKG, the system saves the control set that you
are avoiding and labels it as the failed control set. You can leverage the failed control set in cases
where LKG makes a system bootable to determine what was causing the system to fail to boot by
exporting the contents of the current control set of the successful boot and the failed control set to
.reg files. You do this by using Regedit’s export functionality, which you access under the File menu:

1.

2.

3.

7.

Run Regedit, and select HKLM\SYSTEM\CurrentControlSet.
Select Export from the File menu, and save to a file named good.reg.

Open HKLM\SYSTEM\Select, read the value of Failed, and select the subkey named HKLM\
SYSTEM\Control XXX, where XXX is the value of Failed.

Export the contents of the control set to bad.reg.

Use WordPad (which is found under Accessories on the Start menu) to globally replace all
instances of CurrentControlSet in good.reg with ControlSet.

Use WordPad to change all instances of ControlXXX (replacing XXX with the value of the
Failed control set) in bad.reg with ControlSet.

Run Windiff from the Support Tools, and compare the two files.

The differences between a failed control set and a good one can be numerous, so you should
focus your examination on changes beneath the Control subkey as well as under the Parameters sub-
keys of drivers and services registered in the Services subkey. Ignore changes made to Enum subkeys
of driver registry keys in the Services branch of the control set.

If the problem you're experiencing is caused by a driver or service that was present on the system
since before the last successful boot, LKG will not make the system bootable. Similarly, if a problem-
atic configuration setting changed outside the control set or was made before the last successful
boot, LKG will not help. In those cases, the next option to try is safe mode (described earlier in this
section). If the system boots successfully in safe mode and you know what particular driver was caus-
ing the normal boot to fail, you can disable the driver by using the Device Manager (accessible from
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the System Control Panel item). To do so, select the driver in question and choose Disable from the
Action menu. If you recently updated the driver, and believe that the update introduced a bug, you
can choose to roll back the driver to its previous version instead, also with the Device Manager. To
restore a driver to its previous version, double-click on the device to open its Properties dialog box
and click Roll Back Driver on the Driver tab.

On systems with System Restore enabled, an option when LKG fails is to roll back all system state
(as defined by System Restore) to a previous point in time. Safe mode detects the existence of restore
points, and when they are present it will ask you whether you want to log on to the installation to
perform a manual diagnosis and repair or launch the System Restore Wizard. Using System Restore
to make a system bootable again is attractive when you know the cause of a problem and want the
repair to be automatic or when you don't know the cause but do not want to invest time to determine
the cause.

If System Restore is not an option or you want to determine the cause of a crash during the normal
boot and the system boots successfully in safe mode, attempt to obtain a boot log from the unsuc-
cessful boot by pressing F8 to access the special boot menu and choosing the boot logging option.
As described earlier in this chapter, Session Manager (%SystemRoot%\System32\Smss.exe) saves a
log of the boot that includes a record of device drivers that the system loaded and chose not to load
to %SystemRoot%\ntbtlog.txt, so you'll obtain a boot log if the crash or hang occurs after Session
Manager initializes. When you reboot into safe mode, the system appends new entries to the existing
boot log. Extract the portions of the log file that refer to the failed attempt and safe-mode boots into
separate files. Strip out lines that contain the text “Did not load driver”, and then compare them with
a text comparison tool such as Windiff. One by one, disable the drivers that loaded during the normal
boot but not in the safe-mode boot until the system boots successfully again. (Then reenable the
drivers that were not responsible for the problem.)

If you cannot obtain a boot log from the normal boot (for instance, because the system is crashing
before Session Manager initializes), if the system also crashes during the safe-mode boot, or if a com-
parison of boot logs from the normal and safe-mode boots do not reveal any significant differences
(for example, when the driver that's crashing the normal boot starts after Session Manager initializes),
the next tool to try is Driver Verifier combined with crash dump analysis. (See Chapter 14, “Crash
Dump Analysis,” for more information on both these topics.)

Shutdown

If someone is logged on and a process initiates a shutdown by calling the Windows ExitWindowsEx
function, a message is sent to that session’s Csrss instructing it to perform the shutdown. Csrss in turn
impersonates the caller and sends an RPC message to Winlogon, telling it to perform a system shut-
down. Winlogon then impersonates the currently logged-on user (who might or might not have the
same security context as the user who initiated the system shutdown) and calls ExitWindowsEx with
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some special internal flags. Again this call causes a message to be sent to the Csrss process inside that
session, requesting a system shutdown.

This time, Csrss sees that the request is from Winlogon and loops through all the processes in the
logon session of the interactive user (again, not the user who requested a shutdown) in reverse order
of their shutdown level. A process can specify a shutdown level, which indicates to the system when it
wants to exit with respect to other processes, by calling SetProcessShutdownParameters. Valid shut-
down levels are in the range 0 through 1023, and the default level is 640. Explorer, for example, sets
its shutdown level to 2 and Task Manager specifies 1. For each process that owns a top-level window,
Csrss sends the WM_QUERYENDSESSION message to each thread in the process that has a Windows
message loop. If the thread returns TRUE, the system shutdown can proceed. Csrss then sends the
WM_ENDSESSION Windows message to the thread to request it to exit. Csrss waits the number of
seconds defined in HKCU\Control Pane\Desktop\HungAppTimeout for the thread to exit. (The de-
fault is 5,000 milliseconds.)

If the thread doesn't exit before the timeout, Csrss fades out the screen and displays the hung-
program screen shown in Figure 13-11. (You can disable this screen by creating the registry value
HKCU\Control Panel\Desktop\AutoEndTasks and setting it to 1.) This screen indicates which programs
are currently running and, if available, their current state. Windows indicates which program isn't
shutting down in a timely manner and gives the user a choice of either killing the process or aborting
the shutdown. (There is no timeout on this screen, which means that a shutdown request could wait
forever at this point.) Additionally, third-party applications can add their own specific information
regarding state—for example, a virtualization product could display the number of actively running
virtual machines.

2 programs still need to close:

Q. (Waiting for) Untitled - Not

This program is preventing from shutting

g Personalization

To close the program that is preventing Windows from
shutting down, click Cancel, and then close the program.

FIGURE 13-11 Hung program screen
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EXPERIMENT: Witnessing the HungAppTimeout

You can see the use of the HungAppTimeout registry value by running Notepad, entering text
into its editor, and then logging off. After the amount of time specified by the HungAppTime-
out registry value has expired, Csrss.exe presents a prompt that asks you whether or not you
want to end the Notepad process, which has not exited because it's waiting for you to tell it
whether or not to save the entered text to a file. If you click the Cancel button, Csrss.exe aborts
the shutdown.

As a second experiment, if you try shutting down again (with Notepad's query dialog box
still open), Notepad will display its own message box to inform you that shutdown cannot
cleanly proceed. However, this dialog box is merely an informational message to help users—
Csrss.exe will still consider that Notepad is “hung” and display the user interface to terminate
unresponsive processes.

El f\lntepad @

You cannot quit Windows because the Save As dialog
box in Motepad is open, Switch to Motepad, close this
dialog box, and then try quitting Windows again,

——

If the thread does exit before the timeout, Csrss continues sending the WM_QUERYENDSESSION/
WM_ENDSESSION message pairs to the other threads in the process that own windows. Once all the
threads that own windows in the process have exited, Csrss terminates the process and goes on to the
next process in the interactive session.

If Csrss finds a console application, it invokes the console control handler by sending the CTRL_
LOGOFF_EVENT event. (Only service processes receive the CTRL_SHUTDOWN_EVENT event on
shutdown.) If the handler returns FALSE, Csrss kills the process. If the handler returns TRUE or doesn't
respond by the number of seconds defined by HKCU\Control Panel\Desktop\WaitToKillAppTimeout
(the default is 20,000 milliseconds), Csrss displays the hung-program screen shown in Figure 13-11.

Next, Winlogon calls ExitWindowsEx to have Csrss terminate any COM processes that are part of
the interactive user's session.

At this point, all the processes in the interactive user's session have been terminated. Wininit next
calls ExitWindowsEx, which this time executes within the system process context. This causes Wininit
to send a message to the Csrss part of session 0, where the services live. Csrss then looks at all the
processes belonging to the system context and performs and sends the WM_QUERYENDSESSION/
WM_ENDSESSION messages to GUI threads (as before). Instead of sending CTRL_LOGOFF_EVENT,
however, it sends CTRL_ SHUTDOWN_EVENT to console applications that have registered control
handlers. Note that the SCM is a console program that does register a control handler. When it
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receives the shutdown request, it in turn sends the service shutdown control message to all services
that registered for shutdown notification. For more details on service shutdown (such as the shut-
down timeout Csrss uses for the SCM), see the "Services” section in Chapter 4 in Part 1.

Although Csrss performs the same timeouts as when it was terminating the user processes, it
doesn't display any dialog boxes and doesn't kill any processes. (The registry values for the system
process timeouts are taken from the default user profile.) These timeouts simply allow system pro-
cesses a chance to clean up and exit before the system shuts down. Therefore, many system processes
are in fact still running when the system shuts down, such as Smss, Wininit, Services, and LSASS.

Once Csrss has finished its pass notifying system processes that the system is shutting down, Win-
logon finishes the shutdown process by calling the executive subsystem function NtShutdownSystem.
This function calls the function PoSetSystemPowerState to orchestrate the shutdown of drivers and
the rest of the executive subsystems (Plug and Play manager, power manager, executive, /O manager,
configuration manager, and memory manager).

For example, PoSetSystemPowerState calls the 1/0 manager to send shutdown I/O packets to all
device drivers that have requested shutdown notification. This action gives device drivers a chance to
perform any special processing their device might require before Windows exits. The stacks of worker
threads are swapped in, the configuration manager flushes any modified registry data to disk, and the
memory manager writes all modified pages containing file data back to their respective files. If the
option to clear the paging file at shutdown is enabled, the memory manager clears the paging file at
this time. The I/O manager is called a second time to inform the file system drivers that the system is
shutting down. System shutdown ends in the power manager. The action the power manager takes
depends on whether the user specified a shutdown, a reboot, or a power down.

Conclusion

In this chapter, we've examined the detailed steps involved in starting and shutting down Windows
(both normally and in error cases). We've examined the overall structure of Windows and the core
system mechanisms that get the system going, keep it running, and eventually shut it down. The final
chapter of this book explains how to deal with an unusual type of shutdown: system crashes.
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