
www.ebookee.org

http://www.ebookee.org/

HTML5 Enterprise
Application Development

A step-by-step practical introduction to HTML5 through
the building of a real-world application, including
common development practices

Nehal Shah

Gabriel José Balda Ortíz

P U B L I S H I N G

professional expert ise dist i l led

 BIRMINGHAM - MUMBAI

www.ebookee.org

http://www.ebookee.org/

HTML5 Enterprise Application Development

Copyright © 2013 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy
of the information presented. However, the information contained in this book is
sold without warranty, either express or implied. Neither the authors, nor Packt
Publishing, and its dealers and distributors will be held liable for any damages
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: February 2013

Production Reference: 1120213

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-84968-568-9

www.packtpub.com

Cover Image by Mark Holland (m.j.g.holland@bham.ac.uk)

www.ebookee.org

http://www.ebookee.org/

Credits

Authors
Nehal Shah

Gabriel José Balda Ortíz

Reviewers
Santiago Martín-Cleto

Kevin Roast

Acquisition Editor
Erol Staveley

Lead Technical Editor
Ankita Shashi

Technical Editors
Jalasha D'costa

Worrell Lewis

Project Coordinator
Leena Purkait

Proofreader
Maria Gould

Indexer
Rekha Nair

Production Coordinator
Nilesh Mohite

Cover Work
Nilesh Mohite

www.ebookee.org

http://www.ebookee.org/

About the Authors

Nehal Shah is a technology director with over 10 years of experience building high
performance teams and creating software spanning from frontend to backend and
everything in between. He earned his BA in psychology at the University of Chicago
and his MS in Information Technology at University of North Carolina at Charlotte.
He currently is Executive Director of Engineering at Kaplan Test Prep and leads an
emerging solutions team that builds innovative web and mobile products to capture
new markets. For more information, check out his website at nehalium.com.

First and foremost, I want to thank Gabriel for joining me on this
journey. Your enthusiasm and determination kept me going page
after page and your talent and work ethic never cease to amaze me.

Secondly, I would like to thank my family for pushing me to where I
am today. From my mom and dad buying me my first computer, to
my sister forcing me to learn my multiplication tables, to my brother
teaching me to write my first program, I am indebted to you all for
everything I have.

Lastly, a special thank you goes to my wife, Shilpa, who continues
to look out for me, to encourage me, and to push me to be better
than I am.

www.ebookee.org

http://www.ebookee.org/

Gabriel José Balda Ortíz is a computer engineer and graduate from Simón
Bolívar University in Venezuela. After obtaining his degree, he studied graphic
design in Centro Art, Venezuela. Since 2003, Gabriel has been developing web
applications for multiple enterprises including various freelance projects. In 2011, he
moved to New York to work on educational applications for Kaplan Test Prep. You
can see his portfolio at gabrielbalda.com.

I wish to express my sincere gratitude to Nehal for including me on
this project, and Bernardo Rodriguez for inviting me to be part of his
entrepreneurial adventures.

Special thanks to my mother and my grandmother, they provided
me the education and love that made me the person I am today.

Finally, I want to thank my wife, Cindy, the love of my life, for being
with me on this journey, giving me her support and helping me to be
a better man every day. Part of this book is dedicated to her.

www.ebookee.org

http://www.ebookee.org/

About the Reviewers

Santiago Martín-Cleto started his career as web designer for an outstanding
Spanish media group in 1999. Passionate about design and code, he considers
himself a web standards and open source advocate. He has been very involved
in huge projects for mass media and financial corporations as a contribution to
launch start-ups. As a frontend developer, he is specialized in high traffic websites
performance issues.

Kevin Roast is a frontend software developer with 15 years of professional
experience and a lifelong interest in computer science and computer graphics. He
has developed web software for several companies and is a founding developer
at Alfresco Software Ltd. He is very excited by the prospect of the HTML5
standardization of the web and the progress of web browser software in recent years.
He was co-author of the book Professional Alfresco: Practical Solutions for Enterprise
Content Management published by Wrox, and has been a technical reviewer on several
HTML5-related books.

I would like to thank my wife for putting up with me tapping away
in the evenings reviewing book chapters and to my three kids Alex,
Ben, and Izzy for being little wonders.

www.ebookee.org

http://www.ebookee.org/

www.PacktPub.com

Support files, eBooks, discount offers and more
You might want to visit www.PacktPub.com for support files and downloads related to
your book.

Did you know that Packt offers eBook versions of every book published, with PDF and ePub
files available? You can upgrade to the eBook version at www.PacktPub.com and as a print
book customer, you are entitled to a discount on the eBook copy. Get in touch with us at
service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign up for a
range of free newsletters and receive exclusive discounts and offers on Packt books and eBooks.

TM

http://PacktLib.PacktPub.com

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital book
library. Here, you can access, read and search across Packt's entire library of books.

Why Subscribe?
•	 Fully searchable across every book published by Packt
•	 Copy and paste, print and bookmark content
•	 On demand and accessible via web browser

Free Access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access PacktLib
today and view nine entirely free books. Simply use your login credentials for immediate access.

Instant Updates on New Packt Books
Get notified! Find out when new books are published by following @PacktEnterprise on
Twitter, or the Packt Enterprise Facebook page.

www.ebookee.org

http://www.PacktPub.com
http://www.PacktPub.com
http://www.PacktPub.com
mailto:service@packtpub.com
http://www.PacktPub.com
http://PacktLib.PacktPub.com
http://www.packtpub.com/
http://www.ebookee.org/

www.ebookee.org

http://www.ebookee.org/

Table of Contents
Preface	 1
Chapter 1: HTML5 Starter Kit: Compatibility	 17

The real meaning of compatibility	 17
Browsers	 18

Rendering engine	 19
JavaScript engine	 20

OS platforms	 22
Display resolution	 23
Importance of compatibility	 24
Patching the differences – compatibility libraries	 25

HTML5 Shiv	 25
Modernizr	 27
Explorer Canvas	 31
HTML5 Boilerplate	 32

Before starting app development	 32
Summary	 34

Chapter 2: HTML5 Starter Kit: Useful Tools	 35
Choosing editors and IDEs	 35

Adobe Dreamweaver CS6	 36
Aptana Studio 3	 38
BlueGriffon 1.5.2	 40
Maqetta	 41
eXo	 42
Cloud9	 42

Choosing web servers	 43
Apache	 43
Apache Tomcat	 44
Jetty	 44

www.ebookee.org

http://www.ebookee.org/

Table of Contents

[ii]

Tornado	 44
nginx	 44
LightTPD	 45
Node.js	 45

Prepackaged stacks	 45
Web browsers and add-ons	 45

Mozilla Firefox	 46
Google Chrome	 48
Safari	 50
Internet Explorer	 51
Opera	 51

HTTP proxies	 52
Charles	 53
Fiddler	 53

Summary	 53
Chapter 3: The App: Structure and Semantics	 55

Understanding page structure	 56
Navigation list	 58
Secondary content	 58

Metadata	 59
Microdata	 62
Favicons and icons	 64
CSS3 resets	 68

Individual sides	 70
Shorthand	 71

Sticky footer	 74
General styling	 77
Responsive web design and adaptive web design	 82

Importing CSS files using media queries	 83
Importing other CSS from our main CSS	 83
Using media queries as conditionals in our main CSS	 83

Summary	 86
Chapter 4: The App: Getting Movies Via Geolocation	 87

How it works	 88
The API	 88
A simple request	 89
Movies near you	 90

Self-invoking	 92
That becomes this	 92
Getting location	 94

www.ebookee.org

http://www.ebookee.org/

Table of Contents

[iii]

Getting postal codes	 97
AJAX ain't just a cleaning product	 99
From postal codes to showtimes	 102

Summary	 106
Chapter 5: The App: Displaying Movie Data via CSS3	 107

Back to the browsers' babel tower	 107
CSS3 Magic – adding more styles to MovieNow	 109

Adding rounded corners	 109
Setting color	 110

Red, green, and blue	 111
Red, green, blue, and alpha	 111
Hue, saturation, and lightness	 111
Hue, saturation, lightness, and alpha	 112

Adding gradients	 112
Adding box shadows	 115
Adding text shadows	 118
Some tricks to fake 3D	 120

Movies and styles	 122
Styling our list	 125
Transitions	 127
Animations	 127

Choosing between transitions and animations	 128
Using media queries	 133
Applying CSS3 selectors	 135
Summary	 140

Chapter 6: The App: Trailers via HTML5 Video	 141
Introducing HTML5 video	 141
Implementing a video player	 143

Custom controls	 146
Styling	 148
Adding interactions using JavaScript	 155

Possible improvements	 168
Still not perfect	 168

Introducing HTML5 audio	 169
Implementing an audio player	 169

Custom controllers	 170
Styling	 170

How I learned to stop worrying and love Flash	 171
Summary	 171

www.ebookee.org

http://www.ebookee.org/

Table of Contents

[iv]

Chapter 7: The App: Showing Ratings via Canvas	 173
Charting	 173
Preparing our code	 174
Everything depends on the context	 178

2D context	 179
An overview of the Canvas 2D Drawing API	 180
Drawing charts	 182

3D context – WebGL and experimental WebGL	 185
Entering a tridimensional world	 186
Three.js	 187

Summary	 198
Chapter 8: The App: Selection UI via Drag-and-Drop	 199

Adding showtimes	 199
Styling showtimes	 202
What a drag	 204

Handling drag with JavaScript	 206
Drop it	 207

Toggling the drop zone	 209
Transferring some data	 210
Displaying the results	 211

Summary	 214
Chapter 9: The App: Getting the Word Out via Twitter	 215

Registering our application	 216
How to tweet in MovieNow?	 220
Authenticating	 220

User not logged and/or application not authorized	 222
User logged in	 224
Adding some styles	 226

Posting tweets	 229
Service	 229
Applying HTML	 231
Adding more styles	 232
Adding JavaScript interactions	 238
Form validation support across browsers	 244

New input fields types	 245
Summary	 246

Chapter 10: The App: Consuming Tweets Via Web Workers	 247
Getting the data	 248
Capturing geocodes	 248
Anatomy of a Web Worker	 249

www.ebookee.org

http://www.ebookee.org/

Table of Contents

[v]

Using Web Workers to get nearby tweets	 251
Updating the event listener	 253
Styling the tweets	 256
Summary	 258

Chapter 11: Finishing Up: Debugging Your App	 259
What to look for	 260
Which tools to use	 260
Playing with HTML and CSS	 262
Step by step with JavaScript	 266

JavaScript console	 269
Analyzing load times	 270
JavaScript profiling	 271

Mobile debugging	 271
Web debugging proxies	 273
Summary	 275

Chapter 12: Finishing Up: Testing Your App	 277
Types of testing	 277
Unit testing	 278

Setting up your unit test	 278
Invoking your target	 279
Verifying the results	 280
Frameworks and tools	 280

JsTestDriver	 280
QUnit	 282
Sinon.JS	 282
Jasmine	 283

Functional testing	 283
The Selenium standalone server	 285
The php-webdriver connector from Facebook	 286
PHPUnit	 286

Browser testing	 289
Continuous integration	 290
Summary	 291

Chapter 13: Finishing Up: Performance	 293
Web Performance Optimization (WPO)	 293
Following standards	 294
Optimizing images	 294
Optimizing CSS	 295
JavaScript performance considerations	 298
Additional page performance considerations	 300

Server-side considerations	 300

www.ebookee.org

http://www.ebookee.org/

Table of Contents

[vi]

Performance analytics	 301
Load times	 302
Profilers	 303

Summary	 305
Index	 307

www.ebookee.org

http://www.ebookee.org/

Preface
HTML5, apart from being the latest buzzword in the Internet era, is quickly
becoming the lingua franca for the web. In fact, HTML5 is the first version of
HTML to get its own logo (http://www.w3.org/html/logo). To understand
the significance of that, one must first know a little history.

www.ebookee.org

http://www.ebookee.org/

Preface

[2]

A brief history of time
(client-server edition)
Enterprise application development over the decades has been a pendulum
swinging back and forth between terminal and mainframe, between client and
server. In the 1980s, business logic was largely pushed to the server by "dumb
terminals" or "thin clients" which did very little except act as a middleman between
the user and the server. Beginning in the 1990s, logic started to swing to the client
with "fat clients" bearing the processing burden. With the introduction of the World
Wide Web in 1991, a new breed of thin client emerged. The pendulum swung once
again. Or did it?

The shift between client and server has largely been driven by cost and power.
Early on, investment was made in powerful, costly servers. As PCs became more
powerful in terms of memory and processing ability, as well as lower in cost, it
became possible to build applications that could be distributed more easily, allow
for offline capabilities, and best of all require less powerful (and less costly) server
infrastructures. However, maintaining, upgrading, and deploying "fat clients"
created a new burden.

Web-based applications eventually emerged to solve the problems of cost, power,
and maintainability. At first, they appeared to be much like their "thin client"
predecessors: merely middlemen between users and servers but without the
deployment overhead. However, with the introduction of technologies such as
Java and JavaScript, the "thin client" began to put on a little weight. Before long,
the processing burden began to bleed to the client as applets, scripts, and plugins
became more commonplace and with them the maintainability problem reappeared.
Rather than managing distributions of applications, the problem shifted to managing
distributions of applets, scripts, and plugins.

The situation was bifurcated by the introduction of "rich clients". Business logic
became tiered. A separation of concerns became the norm. Let the server deal
with server stuff. Let the client deal with client stuff. The problem with this,
however, is that the client took some time to be able to handle the client stuff the
world needed of it.

www.ebookee.org

http://www.ebookee.org/

Preface

[3]

A brief history of time
(web browser edition)
When Tim Berners-Lee introduced his World Wide Web browser to his CERN
colleagues in 1990, only a glimmer could be seen of what it would one day become.
Marc Andreessen would introduce Mosaic and graphical browsing in 1993 and
Netscape would soon follow in 1994. After that, Microsoft jumped in with Internet
Explorer in 1995. Pretty soon, the first browser wars would come and go with
Internet Explorer emerging as the victor and the remnants of Netscape coalescing
around Mozilla and Firefox, which was released in 2002. In the 2000s, Apple released
Safari and Google released Chrome.

Web browsers however have seldom held parity with one another. The existence
of web standards and a governing body called the W3C notwithstanding,
browser makers have nevertheless played to their own tunes. In the beginning,
implementations of HTML varied widely and the trend continued through HTML
4.0, XHTML, CSS, and JavaScript. The variance in implementations and behavior
made web development difficult and time consuming.

To combat the limitations and inconsistencies of the web browser, technologies based
on plugins such as Adobe Flash began to flourish continuing where browser-based
technologies such as HTML, CSS, and JavaScript left off. For years, many websites
consisted mostly—and sometimes entirely—of technologies such as Flash; such
plugins even afforded better performance. The notion of Rich Internet Applications
(RIAs) prevailed as the pendulum swung back to fatter clients.

See Google's "The Evolution of the Web" for an interactive
graphic on web browsers and their implementation of modern
browser features at http://evolutionofweb.appspot.com.

The inclusion of plugin-based technologies became a red herring for the promise of
the World Wide Web. While connectivity of content was a hallmark of the original
principles of HTML, content was represented by tags such as embed, object, and
applet where application modules are embedded onto a web page constituted black
boxes that hid content from the semantic web.

Web browsers nevertheless evolved. JavaScript frameworks such as jQuery emerged
to abstract browser differences and offer up richer interactivity. CSS techniques
emerged to overcome the limitations and inconsistencies between the browsers.
Newer browsers emerged with better support for web standards.

www.ebookee.org

http://evolutionofweb.appspot.com
http://www.ebookee.org/

Preface

[4]

However, something was missing. Even though applications were being developed
using browser-based technologies, many application features were left out of the
browser. Consistent mechanisms to add video/audio playback, offline capabilities,
and even browser history management were missing. Flash was still looked upon as
filling in the missing pieces of the web.

Finally, browser development coalesced around HTML5 in 2009 when XHTML 2.0
was abandoned in lieu of something more backward compatible with earlier
versions of HTML. HTML5 sought to address two major areas in the browser: the
need for a more consistent, semantic markup language and the demand for more
natively-supported browser features. When it was introduced in 2004, it heralded a
set of APIs to make the browser into a true application development platform and
thus more semantically amenable.

Features of HTML5

•	 Media API: This embeds, plays, and pauses
multimedia content

•	 Text Track API: This reads properties of the text tracks of
multimedia content

•	 Drag and drop API: This natively makes elements
draggable by setting an attribute

•	 Offline Application Cache: This saves data locally for
offline use

•	 History API: This asserts more control of the back button
•	 Canvas API: This literally draws all over the web in 2D

and 3D
•	 Cross Document Messaging: This overcomes cross-site

scripting limitations
•	 Microdata: This adds more semantic content for search

engines to find
•	 MIME Type and Protocol Handler Registration:

This extends applications with handlers for
additional protocols

•	 Web Workers: This spawns threads independent of
user interaction

•	 Web Storage: This stores data on the client
•	 Web Sockets: This sends two-way messages between

server and client

www.ebookee.org

http://www.ebookee.org/

Preface

[5]

With modern browsers' increasing support for HTML5, reliance on plugin-based
technologies is starting to give way to browser-based implementations. With the
APIs that allow for better control of the experience, the client is finally beginning to
catch up to its promise. Mobile web browsers have especially become a catalyst for
this. Since Adobe Flash is not supported on devices such as the iPhone and iPad, and
since implementation of HTML5 features on Safari have grown, HTML5 is quickly
becoming a standard for mobile web application development. However, if this
trend is to continue, browser makers and application developers must adhere to the
developing standards for HTML5, which brings us back to the logo. To right the
wrongs of the past, HTML5 must have collective agreement on implementation. In
order to inculcate this, there is a burgeoning movement to enforce standards in web
browsers and applications, and speed up implementation as adoption looms. The
HTML5 logo is emblematic of that effort.

The Web Hypertext Application Technology Working Group
(WHATWG) formed in 2004, evolved HTML and conceived
of HTML5 as the next step in the evolution of the HTML
standard. At that time, the W3C was working on the XHTML
2.0 standard; however, in 2009, the W3C decided to halt this
effort and join the WHATWG in its effort to develop HTML5.
In January 2011, it announced that the HTML5 standard
would be referred to as "HTML" and that the specification
would henceforth be a living document.
In December 2012, the World Wide Web Consortium (W3C),
the international web standards body, announced that HTML5
is feature complete. Although not a standard yet, it finally
gives browser makers a stable target upon which to develop
HTML5 features.

It's all about semantics
HTML5 makes an attempt to codify information on the web in a more cohesive way
than before. With previous versions of HTML, content is structured based on how it
should be displayed rather than its inherent meaning. The div tag is often used, but
what does a div tag really mean? To get around this, application developers have
broken up their content using id attributes based on standards and best practices of
web presentation.

For example, application developers use tags such as the following:

<div id="header">
<div id="footer">

www.ebookee.org

http://www.ebookee.org/

Preface

[6]

The obvious problem is that what gets used for the id attribute need not follow a
standard. One application developer could use id="header" while another uses
id="head". In order to standardize structure based on semantics, HTML5 introduces
a set of new tags that takes the vagaries out of the process.

HTML5 introduces a set of new top-level tags, which can be broken down into the
following categories: content, language, layout, and format.

Content tags
The content tags introduced in HTML5 define how new types of content can be
embedded into a web page. Content such as sound, video, and graphics are surfaced
in much the same way text and images have been for so many years.

•	 audio: This tag is used for embedding sound content. Before HTML5, either
some browsers implemented support for audio inconsistently or a special
player typically developed using Adobe Flash would have been required to
play sound. HTML5 removes that dependency and makes the audio player a
consistent function of the web browser itself.

•	 video: This tag is used for embedding video content. Like with audio,
there was inconsistent support or a special player was required to play
video content. Web browsers that support the video tag have a built-in
video player.

•	 canvas: This tag allows for basic 2D to be drawn via JavaScript. 3D graphics
are not consistently supported, however, and are optional.

Language tags
With internationalization taking on more and more precedence, localization has been
a special challenge for web developers. HTML5 introduces a set of new tags to help
make content more accessible to larger audiences.

•	 bdi: This tag defines the directionality of text. This is typically used to
support languages that are read right-to-left.

•	 ruby: The ruby tag in conjunction with the rt and rp tags defines the Ruby
annotation for East Asian typography.

www.ebookee.org

http://www.ebookee.org/

Preface

[7]

Layout tags
HTML5 comes with a set of first-class tags that not only help with laying out the
page, but also allows for the page to be broken up altogether. With HTML5, web
developers have the ability to share sections of content in a more standard way:

•	 header: This tag defines the header of the page or of a section or article.
•	 footer: This tag defines the footer of the page or of a section or article.
•	 nav: This tag defines the menu structure of the website. These are the

navigational links used to semantically break up the website.
•	 section: This tag defines sections of a page. The article and aside tags are

in a way specialized section tags.
•	 aside: This tag defines the sidebar content for a page. Often, a web page is

broken up with ancillary content pushed to the side.
•	 article: This tag defines the main content for a page. While tags such as

section, aside, header, and footer define ancillary content to the page, the
article tag identifies the portion of content that is considered to be the focal
point. Typically, this content is unique to the URI.

Format tags
HTML5 introduces a new set of special tags, which define how areas of content can
be identified and formatted appropriately.

•	 figure: This tag identifies non-contiguous content that is layered into a body
of text. For example, it can be used to wrap diagrams, charts, and graphs that
are referenced by a body of text.

•	 details: This tag defines content that can be toggled as visible or hidden. It
is geared towards showing and hiding content based on a user action such as
help-related content. Web developers have built a variety of solutions to do
this and, with HTML5, the web browser takes care of it.

•	 hgroup: This tag wraps the well-known h1-h6 tags into a cohesive structure.
When headings are related, hgroup shows that they are related. For example,
for an article with a title and subtitle, the title would be wrapped in an h1 tag
while the subtitle would be wrapped in an h2 tag. The hgroup tag around
them signifies that the h2 tag is associated with the h1 tag and not part of the
document outline.

•	 wbr: This tag defines a word break opportunity. Typically, lines of text are
broken up by spaces. The wbr tag allows for the web developer to specify
where in a set of contiguous non-space characters line breaks can be
introduced when there is no room to display it all on one line.

www.ebookee.org

http://www.ebookee.org/

Preface

[8]

•	 progress: This tag indicates the progress of a task and can be used in
conjunction with JavaScript to display a progress bar to the user.

•	 time: This tag is a microformat tag that allows one to specify semantically
that something is a date or time.

•	 meter: This tag is a format tag to define a scalar measurement with a
known range.

•	 mark: This tag indicates text that is relevant to the user. Typically, this would
be used for highlighting specific words within a passage.

Forms get an upgrade
Forms in HTML5 get a whole new set of functionality to allow for better validation
of content and ease of use.

The following tags are new with HTML5:

•	 datalist: This tag works similarly to a select tag with the added feature of
being able to type ahead to select items in the list.

•	 keygen: This tag generates a key pair for use in forms. This is typically used
for client authentication.

•	 output: This tag indicates the result of a calculation. It is associated with a
form tag to display simple calculations to the user especially when used in
conjunction with the new form input types. In addition, the input tag gets a
new set of types. The following input types are new with HTML5:

°° color: This type displays a color picker, which submits a hex code
for that color.

°° date: This type displays a date picker, which submits a date.
°° datetime: This type displays a date and time picker, which submits a

date and time including time zone.
°° datetime-local: This type displays a date and time picker, which

submits a date and time without time zone.
°° email: This type displays a field for entering e-mail addresses.
°° month: This type displays a month-year picker, which submits a

month and year.
°° number: This type displays a field constrained for entering

numeric values.
°° range: This type constrains the user to select numbers within a range.

Typically, this will display as a slider.

www.ebookee.org

http://www.ebookee.org/

Preface

[9]

°° search: This type displays a search field.
°° tel: This type displays a field that constrains the user to typing in a

valid telephone number.
°° time: This type displays a time picker.
°° url: This type displays a field that constrains the user to typing in

a valid URL.
°° week: This type displays a control for picking a week within a year.

Enter microdata
HTML5 adds the ability to define custom semantics for your content. Similar to
microformats in previous versions of HTML, in which a set of predetermined
attributes would allow you to ascribe the semantic meaning of content, microdata
allows you to create your own semantic language to ascribe to your content. While
microformats rely on generic attributes such as class and rel, microdata introduces
itemscope, itemtype, and itemprop to describe content. The itemscope and
itemtype attributes allow you to define a custom type and indicate where it is
defined. The itemprop attribute points to a specific property within the definition:

<div itemscope itemtype="http://mysite.com/Movie">
 <h1 itemprop="title">Your Favorite Movie</h1>
 <p itemprop="summary" >
 A summary of your favorite movie.
 </p>
</div>

An anatomy lesson
Now that we know many of the new tools for building a page in HTML5, let us dive
into what a page looks like.

A word about DOCTYPE
The DOCTYPE declaration in HTML documents has always been a signal to the
browser of the standards to which the document adheres. If a web browser knows
the standards used for the document, it can more efficiently process and render that
document. SGML-based markup languages require this.

In order to simplify the DOCTYPE tag, HTML5 has only one type:

<!DOCTYPE html>

www.ebookee.org

http://www.ebookee.org/

Preface

[10]

Unlike previous versions of HTML, which required references to the specific
DTD being followed, HTML5 is not based on SGML and thus the DTD reference
is not required.

The lang attribute
HTML5 introduces a simplified lang attribute for specifying the language of a page.
In XHTML, an xmlns attribute was required, but HTML5 does not require this.

Metatags are important too
HTML5 adds a new metatag called charset. This specifies the specific character
encoding of the document. It otherwise uses all the metatags from HTML 4.01.

HTML5 includes support for the viewport metatag. This metatag defines how the
web page should be viewed and includes parameters such as width and height.
It also allows you to define zoom settings such as initial scale, and minimum and
maximum scale. It even allows for the ability to target a specific density DPI in case
you want to change how your page looks based on different screen resolutions.

Putting it all together
A basic HTML5 page will look like the following code:

<!doctype html>
<html lang="en">
<head>
 <title>My First HTML5 Page</title>
 <meta charset="utf-8">
 <meta name="description" content="My first HTML5 page.">
 <meta name="author" content="Me">
</head>
<body>
</body>
</html>

We will of course add more to this as we go on.

www.ebookee.org

http://www.ebookee.org/

Preface

[11]

The application
For much of this book, we will be building a mobile web application that illustrates
many of the features of HTML5. The application is called MovieNow, and will be a
one-stop shop for finding, reviewing, and booking movies near you. The features we
will develop in this book are as follows:

•	 Find movies near you using geolocation
•	 Display movie data to the user
•	 View trailers using the video tag
•	 Display reviews using the canvas tag
•	 Select movies using the drag and drop API
•	 Integration with external APIs
•	 Display tweets near you via Web Workers

What this book covers
In the following chapters, we will build a variety of features of HTML5 into our
MoveNow enterprise application.

Chapter 1, HTML5 Starter Kit: Compatibility, discusses support of HTML5 features
across multiple web browsers and devices as well as ways to skirt the deficiencies of
these browsers. The main driver for supporting multiple browsers is ensuring access
to enterprise web applications across multiple devices while maintaining a consistent
user experience.

Chapter 2, HTML5 Starter Kit: Useful Tools, provides a guide to getting started
with HTML5 enterprise application development including available tools, their
installation, and their use. A comprehensive evaluation of the business drivers for
selecting tools will be discussed.

Chapter 3, The App: Structure and Semantics, walks you through setting up the
boilerplate for the MovieNow enterprise application. We will set up the overall page
structure, discuss semantic tags in depth, and talk about microdata.

Chapter 4, The App: Getting Movies via Geolocation, begins the MovieNow enterprise
application by introducing geolocation. We will walk you through the geolocation
API and how to use it to implement useful features.

www.ebookee.org

http://www.ebookee.org/

Preface

[12]

Chapter 5, The App: Displaying Movie Data via CSS3, covers layout and features of
CSS3 including some interesting CSS3 effects. We will also cover best practices
in defining standard styles across web applications and devices including media
queries and compatibility considerations for CSS3.

Chapter 6, The App: Trailers via HTML5 Video, introduces the video and audio tags and
their use within an HTML5 enterprise application. We will talk about manipulating
the playback of multimedia content via JavaScript as well as backward compatibility
with browsers that do not support the HTML5 video and audio tags.

Chapter 7, The App: Showing Ratings via Canvas, walks through HTML5 canvas and
using the drawing API to display graphics in your enterprise applications. We will
use the drawing API to create ratings charts for our MovieNow application.

Chapter 8, The App: Selection UI via Drag-and-Drop, covers the drag-and-drop API.
We will implement the drag-and-drop functionality in the MovieNow enterprise
application demonstrating event delegation and the publish-subscribe pattern.

Chapter 9, The App: Getting the Word Out via Twitter, discusses forms and form
validation in HTML5 by integrating with the Twitter API. We will implement
posting of tweets from within the MovieNow application.

Chapter 10, The App: Consuming Tweets via Web Workers, demonstrates Web Workers
and the power of external APIs to bring social elements to enterprise application. We
will integrate tweets near you into the MovieNow application.

Chapter 11, Finishing Up: Debugging Your App, talks about ways of debugging HTML5
enterprise applications. We will discuss the browser console and HTTP proxies.

Chapter 12, Finishing Up: Testing Your App, covers tools for testing HTML5 enterprise
applications. We will cover functional test suites and automated tools.

Chapter 13, Finishing Up: Performance, discusses performance, which is a crucial topic
for any HTML5 enterprise application. We will talk about strategies and tools and
walk through profiling your HTML5 application.

What you need for this book
You will need prior knowledge of web application development as this book
introduces developers already familiar with the basics of the web including
HTML, CSS, and JavsScript to the advantages of HTML5 and CSS3.

www.ebookee.org

http://www.ebookee.org/

Preface

[13]

Who this book is for
This book is primarily aimed at application developers who have some experience
developing applications for the web, and want to extend their knowledge to the
latest developments in HTML5 and CSS3. Upon completion of this book, readers
will have a thorough understanding of the toolset that HTML5 provides to develop
enterprise applications.

Conventions
In this book, you will find a number of styles of text that distinguish between
different kinds of information. Here are some examples of these styles, and an
explanation of their meaning.

Code words in text are shown as follows: "Copy html5shiv.js from the dist folder
to your JavaScript folder".

A block of code is set as follows:

<div class="geolocation-available">
 Congrats! Your browser supports Geolocation!
</div>
<div class="no-geolocation">
 Your browser doesn't support Geolocation :(
</div>

New terms and important words are shown in bold. Words that you see on the
screen, in menus or dialog boxes for example, appear in the text like this: "Click on
the GENERATE! button".

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about
this book—what you liked or may have disliked. Reader feedback is important for
us to develop titles that you really get the most out of.

www.ebookee.org

http://www.ebookee.org/

Preface

[14]

To send us general feedback, simply send an e-mail to feedback@packtpub.com,
and mention the book title via the subject of your message.

If there is a book that you need and would like to see us publish, please send
us a note in the SUGGEST A TITLE form on www.packtpub.com or e-mail
suggest@packtpub.com.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide on www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to
help you to get the most from your purchase.

Downloading the example code

You can download the example code files for all Packt books you have purchased
from your account at http://www.packtpub.com. If you purchased this book
elsewhere, you can visit http://www.packtpub.com/support and register to
have the files e-mailed directly to you.

Downloading the color images of this book
We also provide you a PDF file that has color images of the screenshots/diagrams
used in this book. The color images will help you better understand the changes in
the output. You can download this file from http://www.packtpub.com/sites/
default/files/downloads/5689_graphics.pdf.

Downloading the example code
You can download the example code files for all Packt books you have purchased
from your account at http://www.packtpub.com. If you purchased this book
elsewhere, you can visit http://www.packtpub.com/support and register to have
the files e-mailed directly to you.

www.ebookee.org

http://www.packtpub.com
http://www.packtpub.com/support
http://www.ebookee.org/

Preface

[15]

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you find a mistake in one of our books—maybe a mistake in the text or
the code—we would be grateful if you would report this to us. By doing so, you can
save other readers from frustration and help us improve subsequent versions of this
book. If you find any errata, please report them by visiting http://www.packtpub.
com/support, selecting your book, clicking on the errata submission form link, and
entering the details of your errata. Once your errata are verified, your submission
will be accepted and the errata will be uploaded on our website, or added to any list
of existing errata, under the Errata section of that title. Any existing errata can be
viewed by selecting your title from http://www.packtpub.com/support.

Piracy
Piracy of copyright material on the Internet is an ongoing problem across all media.
At Packt, we take the protection of our copyright and licenses very seriously. If you
come across any illegal copies of our works, in any form, on the Internet, please
provide us with the location address or website name immediately so that we can
pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors, and our ability to bring
you valuable content.

Questions
You can contact us at questions@packtpub.com if you are having a problem with
any aspect of the book, and we will do our best to address it.

www.ebookee.org

mailto:copyright@packtpub.com
http://www.ebookee.org/

www.ebookee.org

http://www.ebookee.org/

HTML5 Starter Kit:
Compatibility

In the Preface, we covered the general structure of an HTML5 document, but before
jumping into development, we must first talk about addressing the time consuming
issue of compatibility across browsers and platforms. In this chapter, we will cover
how web browsers work and the strategies to support HTML5 across multiple web
browsers and devices. By the end of this chapter, you will be able to follow an initial
plan of action to consistently support your enterprise application's functionality,
interface, and user experience.

We will cover the following topics:

•	 The real meaning of compatibility
•	 Browsers
•	 OS platforms
•	 Display resolution
•	 Importance of compatibility
•	 Patching the differences – compatibility libraries

The real meaning of compatibility
In an ideal world, HTML, CSS, and JavaScript should be interpreted in the same way
across all browsers and platforms. While the World Wide Web Consortium (W3C)
has developed standards for such technologies, browser makers have implemented
them in their own ways. This means that although you can use W3C standards for
developing enterprise applications, it is possible for inconsistencies to arise between
different browsers and platforms.

www.ebookee.org

http://www.ebookee.org/

HTML5 Starter Kit: Compatibility

[18]

Compatibility does not mean that the experience of the user should be the same in
every client, but it needs to maintain certain consistencies. For example, if we have a
list of users in an application, it is good practice to have different inputs depending
on the platform. We can use the scroll bar to navigate the list on any desktop client.
For touch devices, gestures might be preferable.

On the other hand, we need to be careful with platform restrictions because
sometimes it is not technically possible to support the same functionality in every
device or client. A particular instance that illustrates this is the audio and video
volume management in iOS devices (until Version 5.1.1). It is not possible to control
the volume using JavaScript in Safari for iOS. In such cases, it is preferable to hide
the volume control for iOS devices.

To better understand the issues of compatibility, it is important to understand the
evolution of the World Wide Web in relation to the capabilities of the client that
renders the final product, the operating system or platform, and the screen resolution.

Browsers
Since the release of the World Wide Web, there has always been competition for
dominance in usage share in the browser marketplace. By 2001, Internet Explorer
controlled over 90 percent of the browser market after Netscape ceased to be a major
contender, but with the release of Version 1.0 of Mozilla Firefox in November 2004
and Google Chrome in September 2008, it began to see a new crop of competition.

www.ebookee.org

http://www.ebookee.org/

Chapter 1

[19]

As of June 2012 however, Google Chrome has become the most used browser at
just 32.76 percent market share. It now shares an ever crowded space with Mozilla
Firefox, Internet Explorer, Safari, and Opera including mobile counterparts. In
addition, each one of these has its own list of versions, and we need to decide
in some cases from which version we require support for our applications after
knowing that newer versions are always around the corner.

Let's peek behind the scenes a bit to understand the complexity behind the diversity
of browsers and versions. Each browser has two major software components: a
rendering engine and a JavaScript engine.

Rendering engine
Also known as the layout engine or web browser engine, the rendering engine
is responsible for parsing the markup content (HTML) and the style information
(CSS, XSL, and so on), and generating a visual presentation of the formatted content
including media files referenced (images, audio, video, fonts, and so on). It is
important to know the many rendering engines out there because it can help you
to recognize certain behaviors and deduce which browsers are going to behave in
certain ways based on their rendering engine.

While Chrome and Safari use WebKit (developed by Apple, KDE, Nokia, Google,
and others), Firefox uses Gecko (developed by Netscape/Mozilla Foundation),
Internet Explorer uses Trident (owned by Microsoft), and Opera uses Presto.

With CSS, one can identify some exclusive rendering engine features (known as CSS
extensions) by the prefix. WebKit-only features start with -webkit- and Gecko-only
features with -moz-. Opera includes the -o- prefix while Internet Explorer 8 and up
recognize -ms-.

Trident has a different approach. It recognizes common CSS properties with *
or – as a prefix to override previous definitions (for example, *color:#ccc;
and _color:#ccc; are not recognized by other rendering engines except Trident).

www.ebookee.org

http://www.ebookee.org/

HTML5 Starter Kit: Compatibility

[20]

JavaScript engine
The JavaScript engine is the software component that interprets and executes
JavaScript code in the browser. While the rendering engine is responsible for the
visual presentation of HTML content using CSS styles, the JavaScript engine will
interpret and execute JavaScript code.

Chrome employs the V8 engine, Firefox now uses Jägermonkey, Internet Explorer 9
features Chakra, Safari uses Nitro, while Opera substituted SunSpider with Carakan
in 2010.

The rankings for what many consider the current browser war
are largely driven by the speed of the JavaScript engine. While
other engines rely on interpretation and compilation, V8 has no
intermediate parser and it generates an assembler using its own
runtime environment. In other words, it has a virtual machine.
This has allowed Chrome to become one of the fastest browsers.

As a general rule (there are some exceptions), it is better to load HTML and CSS first
and then JavaScript. This can be done by including the <script> tags that import
JavaScript just before closing the <body> tag. The reason for this is that it is faster
to render HTML and CSS than to interpret and execute JavaScript. Web pages will
appear to load faster as a result.

Where it is not possible to include the <script> tags in the body, there are two
attributes on the <script> tag that can be used to signal to the browser when
the script should be downloaded. These are async, which was introduced in
HTML5, and defer. The defer attribute literally does what it purports; it defers
script execution until the page has been rendered. This way, the DOM is ready
for your script. The async attribute signals to the browser to download the script
asynchronously and without blocking the rendering engine and executes it when
it is ready. Both execute before the DOMContentLoaded event. The key difference is
that defer executes each script sequentially and async executes each script when it
is ready. Typically, in order to support older browsers that do not support the async
attribute, these attributes are used together so that browsers that do not perform
asynchronously can fall back to defer.

While there are many differences between browsers, it is important to be aware that
inside the same browser category exists multiple versions whose HTML5 and CSS3
support vary widely. This is especially true for Internet Explorer. Proper support for
HTML5 and CSS3 does not appear until Internet Explorer 9.

www.ebookee.org

http://www.ebookee.org/

Chapter 1

[21]

Microsoft has started a campaign to deprecate and reduce
the market share of Internet Explorer 6 worldwide. See
http://www.ie6countdown.com for more details. The Aten
Design Group took this to another level by commemorating the
IE6 funeral at http:///www.ie6funeral.com.

Most of the HTML5 and CSS3 capabilities are supported in the following browsers
and versions:

•	 Internet Explorer 9 and higher
•	 Firefox 7 and higher
•	 Chrome 14 and higher
•	 Safari 5 and higher
•	 Safari Mobile 3.2 and higher
•	 Opera 11 and higher
•	 Opera Mobile 5 and higher

Even so, there are still some features not supported and there are inconsistencies
between the implementations. One interesting case study that reveals the lack of
standards across the browsers is the use of video in HTML5. To use the native video
capabilities of HTML5, the video file must be compressed using specific codecs.
There are three major codecs that exist: Ogg Theora (royalty-free), H.264 (free for
end consumer but involves royalties for products that encode and decode), and
WebM (royalty-free). As Firefox is oriented to use open source technologies, it
initially supported only Ogg and WebM. Chrome currently supports all three codecs,
but, for similar reasons as Firefox support for H.264, will be removed in subsequent
versions (although it may continue support on mobile). Safari, Safari Mobile, and
Internet Explorer 9 and higher support only H.264 by default, but you can install
plugins to support Ogg and WebM (except on Safari Mobile).

The following websites provide detailed information
about support of HTML5 features on different browsers
and differences in behaviors if any:

•	 http://caniuse.com/
•	 http://html5please.com/

www.ebookee.org

http://www.ebookee.org/

HTML5 Starter Kit: Compatibility

[22]

OS platforms
Any web application will be affected by the operating system (OS) on which it
runs. The most noticeable difference is the appearance of user interface elements
of the browser including the scroll bars, submit buttons, checkboxes, and so on.
This is an important consideration because the size and shape of these elements can
vary across multiple operating systems – even with the same web browser. In fact,
some operating systems restrict some functionality, as was the case with <input
type="file"> which initially had not been supported on iOS prior to iOS6.

OS platform statistics show that Windows is by far the most used OS on the web.
Mobile platforms, however, may take on more prominence in the years ahead
considering the growing popularity of tablet devices and technical improvements
of smartphones.

www.ebookee.org

http://www.ebookee.org/

Chapter 1

[23]

Display resolution
With so many devices on the market, screen resolution is quickly becoming an
important factor for consideration when planning web applications. Android has a
diversity of devices of many sizes and densities. According to the usage of screen
resolutions, the advance of new hardware technologies has made it possible to
increase the number of pixels on modern screens:

Even though most desktop systems now have a resolution higher than 1024 x
768, the rise of mobile technologies has created a paradox where lower resolution
displays are retaking lost ground. The experience delivered by an enterprise
application does not need to be—and in fact should not be—the same for all the
devices. Viewing a page on a desktop screen at 1920 x 1200 can be vastly different
from a mobile phone screen at 960 x 540 not only because of the resolution, but also
because of the size of the device and readability (the ease in which text can be read
and understood). It is sometimes important to detect the resolution to adapt the user
experiences. To be sure, new techniques such as responsive web design are taking
hold to address these issues.

www.ebookee.org

http://www.ebookee.org/

HTML5 Starter Kit: Compatibility

[24]

As if there were not enough variables in the playfield,
Apple introduced Retina Display in June 2010 with
the iPhone 4, having a native resolution of 960 x 640.
This technology is based on a higher pixel density that
is beyond the human eye's capacity to see pixelation
in images on the screen at a typical viewing distance.
Although it was not so noticeable for web images in the
iPhone 4, the new iPad and the new line of MacBook
Pros released in 2012 with Retina Display create new
requirements for web applications.
First, there are some web development techniques which
determine if the client is a mobile device by using CSS to
detect the device resolution. With the new iPad, 2048 x
1536 px resolution is not possible or at least not intuitive.
The resolution of the new iPad is higher than the majority
of desktops and laptops in the market. Secondly, to avoid
the pixelated effect in any application viewed on the new
iPad or the new MacBook Pro, it is necessary to include
higher resolution images for these Apple devices and
images in normal resolution for backward compatibility
with all other devices.

Importance of compatibility
At this point, it is natural to ask why it is important to care about compatibility if one
needs to only develop enterprise applications used internally within an organization,
where a specific browser can be mandated. This attitude can be perilous for two
reasons. First, businesses are moving quickly towards mobile delivery and controlling
the platform is becoming thus less tenable. Secondly, constraining an organization in
this way hampers its ability to update its application support capabilities as it couples
the enterprise application too tightly to the choices in desktop support. If a company
wanted to upgrade to a newer operating system or default web browser, constraining
it by requiring that certain versions of browsers be supported can have undesired
consequences down the line.

www.ebookee.org

http://www.ebookee.org/

Chapter 1

[25]

Patching the differences – compatibility
libraries
In general, we want to support as many browsers as possible, so we are going to
need a way to allow backward compatibility by implementing the capabilities not
available on the browser, informing the user that the feature is not available, or
modifying the user experience depending on the browser's capabilities. To this end,
there are many JavaScript libraries that can help.

For this chapter, styles and scripts will be included inline
within the HTML file to simplify comprehension even though
it is a good practice to have styles and scripts in separate files.

HTML5 Shiv
As already noted, Internet Explorer begins to support HTML5 tags in Version 9.
HTML5 Shiv allows for support in previous versions. Also known as HTML5 Shim,
it is an open source JavaScript library that enables styling for HTML5 elements in
versions of Internet Explorer before IE 9. It accomplishes this by using document.
createElement("element") to tell the browser that the tags exist.

Suppose that we are testing in Internet Explorer 8, and we have the following code:

<!DOCTYPE HTML>
<html>
<head>
<style>
header{
 color:#ff0000;
 font-size:40px;
}
</style>
</head>
<body>
 <header>Hello HTML5!</header>
</body>
</html>

Downloading the example code
You can download the example code files for all Packt books
you have purchased from your account at http://www.
PacktPub.com. If you purchased this book elsewhere,
you can visit http://www.PacktPub.com/support and
register to have the files e-mailed directly to you.

www.ebookee.org

http://www.ebookee.org/

HTML5 Starter Kit: Compatibility

[26]

In Internet Explorer 8, the text will not display the style. HTML5 Shiv can be used to
make this work.

It is good practice to dive into libraries before you use them to
understand exactly what they are doing. We encourage you
to check out the HTML5 Shiv code at the following location:
https://github.com/aFarkas/html5shiv/blob/
master/src/html5shiv.js.

To install this library you need to perform the following steps:

1.	 Download the library from the following location: https://github.com/
aFarkas/html5shiv/zipball/master.

2.	 Uncompress the file.
3.	 Copy html5shiv.js from the dist folder to your JavaScript folder

(js in our case).
4.	 Insert the following code inside the head tag:

<!--[if lt IE 9]>
<script src="js/html5shiv.js"></script>
<![endif]-->

As a result our code should look as follows:

<!DOCTYPE HTML>
<html>
<head>
<!--[if lt IE 9]>
 <script src="js/html5shiv.js"></script>
<![endif]-->
<style>
header{
 color:#ff0000;
 font-size:40px;
}
</style>
</head>
<body>
<header>Hello HTML5!</header>
</body>
</html>

Note that the <!--[if lt IE 9]> conditional comment
includes the JavaScript library only if the browser version is
Internet Explorer prior to Version 9.

www.ebookee.org

http://www.ebookee.org/

Chapter 1

[27]

If you run this code in Internet Explorer 8, it will show a Hello HTML5! in red with
a bigger font. This is one of the exceptions where we need to load a JavaScript library
inside <head>, because we need to give the capability to recognize HTML5 elements
to the browser before it begins styling.

Modernizr
Since not even the newest versions of web browsers support all HTML5 and CSS3
capabilities, it is useful to do some kind of detection to show a notification or change
the behavior of a page when a feature is not supported. An old strategy was to look
at the property navigator.userAgent to detect the browser's user agent and code
based on the pertinent cases. As user agents change, it becomes difficult to keep pace
and alter an application. An alternative approach to user agent detection is feature
detection, wherein an application detects whether a particular feature is supported
and reacts accordingly. The following is an example of feature detection:

function supports_video() {
 return !!document.createElement('video').canPlayType;
}

Modernizr is an open source JavaScript library that allows support for different
levels of experiences based on the capabilities of each browser using a simple feature
detection model. Additionally, Modernizr uses HTML5 Shiv, adding the ability to
style HTML5 elements on Internet Explorer prior to Version 9.

Going back to our previous example:

<!DOCTYPE HTML>
<html>
<head>
<style>
header{

www.ebookee.org

http://www.ebookee.org/

HTML5 Starter Kit: Compatibility

[28]

 color:#ff0000;
 font-size:40px;
}
</style>
</head>
<body>
 <header>Hello HTML5!</header>
</body>
</html>

Suppose that we want to implement the geolocation functionality using HTML5 to
get the geographical position of the user, and we want to detect if it is available. For
that we start using Modernizr:

1.	 Go to http://modernizr.com/download/.
2.	 Select the functionality that you want to validate and html5shiv. In this

case, we are going to select the Geolocation API functionality under Misc.,
html5shiv v3.4 and Add CSS Classes present under Extra.

3.	 Click on the GENERATE! button.
4.	 Copy the source code generated.
5.	 Create a new JavaScript file (call it modernizr.js), paste the source code,

and save it in your JavaScript folder.
6.	 Import the Modernizr library <script src="js/modernizr.js"

type="text/javascript"></script> inside <head>. At this point the
code should look as follows:

<!DOCTYPE HTML>
<html>
<head>
<script src="js/modernizr.js" type="text/javascript"></script>
<style>
header{
 color:#ff0000;
 font-size:40px;
}
</style>
</head>
<body>
<header>Hello HTML5!</header>
</body>
</html>

From here we have two possible solutions; use JavaScript or use CSS to
detect the fallback.

www.ebookee.org

http://www.ebookee.org/

Chapter 1

[29]

In order to show a message or display a different style, we can use CSS with the
following steps:

1.	 Add a class called no-js to the <html> tag. This will work as a default
option if JavaScript is not supported. If JavaScript is supported, Modernizr
will replace no-js with a class called js, and will add classes for all features
using the prefix no- if it is not supported. For example, if your browser
supports geolocation, the html tag will look something like the following
line of code:
<html class="js geolocation">

Otherwise, it will look like the following code:

<html class="js no-geolocation">

2.	 In the <body> tag, add two div tags containing messages for when
geolocation is supported and for when it is not:
<div class="geolocation-available">
 Congrats! Your browser supports Geolocation!
</div>
 <div class="no-geolocation">
Your browser doesn't support Geolocation :(
</div>

3.	 Add CSS styles to show and hide the messages. By default, hide both
messages and use the class created by the detection class in the <html>
tag to hide or show the classes accordingly:

div.geolocation-available, div.no-geolocation{
 display: none;
}
.no-geolocation div.no-geolocation, .geolocation div.geolocation-
available {
 display: block;
}

Finally, the complete code should look like the following code:

<!DOCTYPE HTML>
<html class="no-js">
<head>
 <script src="js/modernizr.js" type="text/javascript"></script>
 <style>
 header{
 color:#ff0000;
 font-size:40px;
 }

www.ebookee.org

http://www.ebookee.org/

HTML5 Starter Kit: Compatibility

[30]

 div.geolocation-available, div.no-geolocation{
 display: none;
 }
 .no-geolocation div.no-geolocation, .geolocation div.
geolocation-available {
 display: block;
 }
</style>
</head>
<body>
 <header>Hello HTML5!</header>
 <div class="geolocation-available">
 Congrats! Your browser supports Geolocation!
 </div>
 <div class="no-geolocation">
 Your browser doesn't support Geolocation :(
 </div>
</body>
</html>

In case we want to implement a JavaScript fallback, we would need to create a
conditional statement using Modernizr. In our case, since Modernizr is a JavaScript
object with methods, we can use Modernizr.geolocation to test whether
geolocation is supported. The conditional statement should be as follows:

if (Modernizr.geolocation){
 alert("Congrats! Your browser supports Geolocation!");
}else{
 alert("Your browser doesn't support Geolocation :(");
}

The complete code should look as follows:

<!DOCTYPE HTML>
<html>
<head>
 <script src="js/modernizr.js" type="text/javascript"></script>
 <style>
 header{
 color:#ff0000;
 font-size:40px;
 }
 </style>
</head>
<body>

www.ebookee.org

http://www.ebookee.org/

Chapter 1

[31]

 <header>Hello HTML5!</header>
 <script type="text/javascript">
 if (Modernizr.geolocation){
 alert("Congrats! Your browser supports Geolocation!");
 }
else{
 alert("Your browser doesn't support Geolocation :(");
 }
 </script>
</body>
</html>

Modernizr—in spite of its name—does not actually add missing functionalities
to browsers save for the HTML5 tags styling support. Where you need to create
fallbacks for functionalities in old browsers, Modernizr is a good choice. However,
if simple styling with HTML5 and CSS3 is needed, HTML5 Shiv should suffice.

Explorer Canvas
Internet Explorer in versions prior to Version 9 does not support HTML5
Canvas, which allows 2D command-based drawing, but Explorer Canvas
enables this feature.

To use Explorer Canvas you can perform the following steps:

1.	 Go to http://code.google.com/p/explorercanvas/downloads/list.
2.	 Download the last version of Explorer Canvas.
3.	 Copy excanvas.compiled.js in your JavaScript folder.
4.	 Import the library in <head>, verifying the version of Internet Explorer:

<!--[if lt IE 9]>
 <script type="text/javascript" src="js/excanvas.compiled.
js"></script>
 <![endif]-->

5.	 Now you can use the HTML5 Canvas API in older versions of
Internet Explorer.

As it is a JavaScript library, meaning that it needs to be interpreted and executed at
page load, its performance will be considerably lower than modern browsers. It also
does not support several features and is quite buggy.

www.ebookee.org

http://www.ebookee.org/

HTML5 Starter Kit: Compatibility

[32]

HTML5 Boilerplate
A very simple and straightforward way of setting up a project including
incorporation of Modernizr and basic configuration is to use a starter kit such as
HTML5 Boilerplate. HTML5 Boilerplate is a collection of HTML, CSS, and JavaScript
files including Modernizr, jQuery, and CSS Reset2 (a set of CSS rules that override
default and inconsistent renderings in different browsers in a way that creates a
common baseline). Even when compatibility is the furthest topic of interest, this
template can be used as an out-of-the-box way of initializing the CSS and putting the
necessary JavaScript libraries in place to make compatibility a non-issue.

You can download HTML5 Boilerplate from http://html5boilerplate.com/ by
selecting one of the following options:

•	 Boilerplate: The file collection not minimized and commented
•	 Boilerplate Stripped: The file collection minimized and not commented
•	 Customize Boilerplate: You can configure which files will go in your

base project
While the last case may be enough, sometimes it is necessary to include more
customizations. Fortunately, there is a tool called Initializr, which removes
unneeded files from our HMTL5 Boilerplate project. Additionally, you can use the
templates provided by Initializr to modify the visual presentation according to the
window size / screen resolution.

To download Initializr, go to http://www.initializr.com/ and select:

•	 Classic H5BP: This is the basic project
•	 Responsive: This is the responsive project based on screen resolution
•	 Bootstrap: This is the responsive project using Twitter's Bootstrap

template (http://twitter.github.com/bootstrap/) using Less
(http://verekia.com/less-css/), a dynamic stylesheet language
that generates CSS on compilation using a JavaScript compiler

After this you can choose or modify the files included.

Before starting app development
As we build the MovieNow app in the following chapters, we are going to start from
scratch, so we can see the process step by step. But remember that you could use
templates to build your enterprise applications. The only caveat is that you always
need to know what is inside the project; sometimes an unknown JavaScript or CSS
file may cause serious performance issues.

www.ebookee.org

http://www.ebookee.org/

Chapter 1

[33]

While all this can sound like a nightmare, you only need to follow a simple strategy
to embark on the magical quest for compatibility:

1.	 Follow the W3C standards for HTML, CSS, and JavaScript
(http://www.w3schools.com).

2.	 Choose JavaScript libraries or CSS to give backward compatibility for
old browsers. In general, a compatibility solution that does not include
JavaScript is better than the one that does, but sometimes it is not possible
with only CSS.

3.	 Define a course of action for allowing accessibility for any user agent.
There are a couple of strategies of note: graceful degradation or progressive
enhancement. Graceful degradation implies that you begin developing
for modern browsers, and then you add handlers for less capable devices.
Progressive enhancement, on the other hand, implies starting with basic
capabilities and building to the lowest common denominator for browser
features, and then adding enhancements for more capable browsers.

4.	 It is a good practice to support different user experiences (UX) for mobile
devices for a series of reasons: the keyboard can be cumbersome in mobile
devices such as mobile phones and even more so on on touchscreen devices;
viewing the same layout on smaller resolutions can force users to constantly
zoom in and out or make it difficult to click some buttons or links, and
sometimes it is not technically possible to have certain functionalities. For
example, autoplay for video or volume control using JavaScript in iOS
Devices (iPhone, iPad, and so on) is not possible.

5.	 Make a test plan for multiple browsers. There are services that allow you to
test your enterprise application across multiple browsers and platforms. Of
course, the services that employ snapshots may be sub-optimal since they
do not test JavaScript execution. It is always good to have all of the browsers
that your system will support installed on a test machine, and there are tools
that allow you to change the browser version on the fly.

6.	 Use the official documentation for web browsers as well as the community
forums to keep abreast of what browser makers are doing.

www.ebookee.org

http://www.ebookee.org/

HTML5 Starter Kit: Compatibility

[34]

Summary
In this chapter, we learned about the differences between the web browsers and
the inconsistent ways in which they behave. We talked about the importance of
compatibility and strategies you can use to level the playing field. In general, web
developers must try to cover most of the cases to ensure compatibility, but at the
same time it is important to understand the project and the target audience, and
adapt our solutions to them first and then to the global scene.

As a final thought, we need to put ourselves in the user's shoes. The last thing
a user wants to see is a message asking to download another browser to use an
application. Remember that our goal as developers is not only to bring a collection
of requirements to life, but also to create engaging user experiences that define the
application as a medium that facilitates an end, rather than an obstacle that separates
the user from a final goal.

Before you start building a house, you need to understand what tools you need
and how to use them. In the next chapter, we will look at setting up your machine
and the available tools that we can use to build our HTML5 enterprise application,
including a comprehensive evaluation of the business decisions involved in selecting
these tools.

www.ebookee.org

http://www.ebookee.org/

HTML5 Starter Kit:
Useful Tools

Building HTML5 enterprise applications will require the right tools to do the job.
Fortunately, there are a plethora of tools available to support all facets of web
application development. This chapter introduces a gamut of tools useful for web
development, including editors, Integrated Development Environments (IDEs),
web servers, web browsers, browser tools, and even HTTP proxies in the market.

We will cover the following topics:

•	 Choosing editors and IDEs
•	 Choosing web servers
•	 Prepackaged stacks
•	 Web browsers and add-ons
•	 HTTP proxies

Choosing editors and IDEs
The robustness of editors and integrated development environments varies widely
and they are often built to address the various needs of the end user. They can range
from very simple text editors such as Notepad (Windows) and TextEdit (Mac) to
sophisticated IDEs such as Eclipse. To make things even more interesting, there is a
variety of new web-based editors and IDEs that allow you to develop from virtually
any machine and collaborate with others on web projects with minimal setup.

www.ebookee.org

http://www.ebookee.org/

HTML5 Starter Kit: Useful Tools

[36]

Selecting one will largely be based on your needs. If your needs are simple, your
tools may be simple. If your needs are complex, your tools will be complex.
Although you could use almost anything to write your code, we will herein cover
tools that are specifically geared towards HTML5 development.

What follows is a brief discussion of the options available to you when developing
your HTML5 enterprise applications. Of course, this is not meant to be an exhaustive
list, as software updates will change the landscape considerably as time goes on.

Adobe Dreamweaver CS6
This is available for Windows XP SP3 and up and Mac OS X 10.6.8 and up. Adobe's
flagship product for website development underwent a major upgrade with Adobe
Creative Suite 6. Introduced into the product in update 11.0.3 of CS5, Adobe baked
in HTML5 and CSS3 support including HTML5 templates, updates to the WebKit
engine, and coding hints to streamline HTML5 development:

www.ebookee.org

http://www.ebookee.org/

Chapter 2

[37]

With the HTML5 features in Dreamweaver, you can use the Multiscreen Preview
feature to view your web page in screens of different sizes simultaneously. This
includes dynamic rendering of audio and video content.

When creating a new document, be sure to select HTML5 for the DocType in the
New Document dialog as shown in the following screenshot:

Additional information on Adobe Dreamweaver including how to purchase it can be
found at http://www.adobe.com/products/dreamweaver.html.

www.ebookee.org

http://www.ebookee.org/

HTML5 Starter Kit: Useful Tools

[38]

Aptana Studio 3
This is available for Windows XP and up, Mac OS X 10.5 and up, Linux Ubuntu 9
and up, and Linux Fedora 12 and up. Aptana Studio 3 is a derivative of the Eclipse
engine (http://www.eclipse.org/) and serves as a powerful, commercial-friendly
open source IDE. It supports a variety of languages including Java, Ruby, and PHP
as well as HTML, CSS, and JavaScript. It also boasts a number of plugins for source
control management, deployment, and many other customizations.

HTML5 compatibility support is a major feature of Aptana Studio 3. In its Code
Assist feature, it displays which browsers support each element and the level of
support. Additionally, it bakes in HTML5 Boilerplate as a web project template, so
you can get started right away with all the tools you need to build a cross-browser
compatible HTML5 enterprise application.

www.ebookee.org

http://www.ebookee.org/

Chapter 2

[39]

Additional information on Aptana Studio 3 including where to download it from can
be found at http://www.aptana.com/products/studio3.

www.ebookee.org

http://www.ebookee.org/

HTML5 Starter Kit: Useful Tools

[40]

BlueGriffon 1.5.2
This is available for Windows XP and up, Mac OS X 10.5 and up, Linux Ubuntu 11.10
and up, and Linux Fedora 16 and up. BlueGriffon is a free WYSIWYG editor based
on the Gecko rendering engine (the rendering engine used in Mozilla Firefox). It
includes tools for developing HTML5 pages such as a DOM Explorer and support
for directly embedding audio and video files. It also abstracts out many CSS3 effects
with its style editor.

When creating a new document, simply pull down the new document toolbar
(located next to the new document icon) and click on More Options…. Be sure
HTML 5 is selected, that the language is set, and then click on OK.

Additional information on BlueGriffon can be found at http://bluegriffon.org/.

www.ebookee.org

http://www.ebookee.org/

Chapter 2

[41]

Maqetta
Maqetta is an open source initiative of the Dojo Foundation to build an HTML5-
based editor geared towards visual designers through a WYSIWYG user interface.
Currently offered as a hosted product (although this may change in the future), it
is in technology preview status with the hopes of releasing a 1.0 version soon. The
following screenshot shows the Maqetta interface for mobile applications using an
iPhone device and running on Google Chrome.

In addition to visual editing, Maqetta provides the ability to review and comment,
develop wireframes, and capture interactive states in a way that communicates
design intentions easily to developers.

Additional information on Maqetta can be found at http://maqetta.org/.

www.ebookee.org

http://www.ebookee.org/

HTML5 Starter Kit: Useful Tools

[42]

eXo
eXo provides a free, cloud-based IDE that offers collaboration and deployment
features. In addition to HTML5 and JavaScript, it supports the development of Java,
Ruby, and Python applications. It also integrates with Platform as a Service (PaaS)
providers such as CloudBees and Heroku. It is based on eXo Platform 3.5, which is
an enterprise Java portal and user experience platform that provides content and
document management as well as social activity streams.

Additional information on eXo can be found at http://www.cloud-ide.com/.

Cloud9
Cloud9 is another cloud-based IDE that supports multiple languages in addition
to HTML5 and JavaScript. It has gained particular interest for its integration with
GitHub and Bit Bucket authentication integration and real-time collaboration. It also
allows for SSH and FTP access and capabilities to work offline. Cloud9 has been
positioning itself as a major IDE for Node.js development.

www.ebookee.org

http://www.ebookee.org/

Chapter 2

[43]

Although Cloud9 has a limited free subscription, it offers a premium subscription
that offers additional private workspaces and full shell access.

Additional information on Cloud9 can be found at https://c9.io/.

Choosing web servers
If you are managing your own web cluster or are developing on your local machine,
it is helpful to know the web server packages available to you. It is especially helpful
to install and run a web server on your machine to get a better understanding of how
your HTML5 enterprise application will run without the overhead of uploading and
syncing with a remote host. The following is a brief introduction to some of the most
known web servers in the market.

Apache
One of the more widely used HTTP servers is Apache. It is an open source project
going back to 1996 and it installs on both Unix and Windows operating systems.

Information on installing Apache web server can be found at
http://httpd.apache.org/docs/2.4/install.html.

www.ebookee.org

http://www.ebookee.org/

HTML5 Starter Kit: Useful Tools

[44]

Apache Tomcat
Tomcat is an open source web server that provides a servlet container allowing you
to run Java code. It is available primarily for Windows and Unix, but can be installed
on Mac by downloading the appropriate Unix packages.

To install Tomcat on Windows or Unix, you can follow the instructions on this website:

http://tomcat.apache.org/tomcat-6.0-doc/setup.html

For Mac, you can refer to this link:

http://www.malisphoto.com/tips/tomcatonosx.html

Jetty
Jetty is an HTTP server that is hosted by the Eclipse Foundation and is baked into the
Eclipse IDE. It is known for its small footprint.

To use Jetty, you need to only use the Eclipse IDE (Aptana Studio 3, since it is
derived from Eclipse, also comes with Jetty). Otherwise, you can find information
on downloading and installing it at http://wiki.eclipse.org/Jetty/.

Tornado
Tornado is a relatively new open source web server, based on the server that powers
FriendFeed (a real-time feed aggregator that consolidate updates from multiple
social networks). It is particularly known for being fast and non-blocking and is,
therefore, recommended for developing web services.

Information on Tornado can be found at http://www.tornadoweb.org/.

nginx
Pronounced "engine x", nginx started by running a number of Russian websites.
Now it powers enterprises such as NetFlix and Hulu. Developed in 2002 by Igor
Sysoev, it relies on an asynchronous architecture that allows it to scale quickly
without impacting system resources.

Information on downloading and installing nginx can be found at
http://nginx.org/en/download.html.

www.ebookee.org

http://www.ebookee.org/

Chapter 2

[45]

LightTPD
Pronounced "lighty", LighTPD is an open source web server, designed and
optimized for high performance environments. It is being used by sites such as
YouTube, Wikipedia, and Meebo. It was developed by Jan Kneschke as a proof of
concept to handle 10,000 connections in parallel on the same server (known as the
c10k problem).

Information about download and install process can be found at
http://www.lighttpd.net/.

Node.js
Although not technically a web server in and of itself, Node.js is a platform where
you can write a simple web server. With the V8 JavaScript runtime developed for
Google Chrome at its core, you can develop enterprise web applications with Node.
js easily as the HTTP protocol is bundled into the platform. It is built with the same
non-blocking principles used in Tornado and nginx, so it scales easier than other web
servers and in some scenarios with little impact to system resources.

Additional information on Node.js can be found at http://nodejs.org/.

Prepackaged stacks
To make an environment setup even easier, there are a number of easy-to-install,
prepackaged server stacks that have the web server, database, and scripting platform
(typically PHP) built-in. You simply have to install the package and
you have a complete sandbox environment ready to go. Some popular solutions
include MAMP (http://www.mamp.info/), which is built for Mac OS, WAMP
(http://www.wampserver.com/en/), which is built for Windows, and XAMPP
(http://www.apachefriends.org/en/xampp.html), which has versions for Mac
OS, Windows, Linux, and Solaris.

Web browsers and add-ons
Now that we have the tools to write and run our HTML5 enterprise applications, a
discussion of the web browsers available to view them is in order. We will, however,
take this a step further and cover some of the development add-ons available as
well. With the richness of the tools either built into web browsers or pluggable, it
is important to know what you have readily available to ensure that your HTML5
enterprise applications are optimal. The following is an introduction to the most
common modern web browsers.

www.ebookee.org

http://www.ebookee.org/

HTML5 Starter Kit: Useful Tools

[46]

Mozilla Firefox
Until recent years Mozilla Firefox has been the most developer-friendly web browser
by far; thanks to it many other web browsers have been including the most robust
set of tools for developers. In fact, many web developers develop for Firefox first and
then accommodate other browsers after. It comes with robust web developer tools
built-in. Beyond that, however, you can augment it with add-ons that provide you
with an even greater toolset for developing enterprise applications.

Firebug (http://getfirebug.com/) allows you to inspect the rendered HTML
markup, tweak CSS, and see it update automatically on the page, monitor and
profile network activity, and debug JavaScript. In the following screenshot, you
can see the Firebug HTML code inspector:

Not only is it an extension, it is an add-on that can be itself extended. It boasts a
number of extensions that add even more functionalities including FireCookie,
FireUnit, FireQuery, and PageSpeed. Look here for a comprehensive list of Firebug
extensions at http://getfirebug.com/wiki/index.php/Firebug_Extensions.

www.ebookee.org

http://www.ebookee.org/

Chapter 2

[47]

Another useful add-on is FireStorage and HTML5toggle. FireStorage allows you to
view and manage Firefox's HTML5 local storage, while HTML5toggle allows you to
toggle HTML5 support on and off in order to test fallbacks.

If you want to test new features before their final
release, Mozilla provides channels to download
pre-release and release versions of Firefox at
http://www.mozilla.org/en-US/firefox/channel/.
You can find three channels:

•	 Firefox: This is the final release, tried and tested
•	 Firefox Beta: This provides the latest features in a

fairly stable environment
•	 Firefox Aurora: This channel is an experimental

release with new features, but not so stable

www.ebookee.org

http://www.ebookee.org/

HTML5 Starter Kit: Useful Tools

[48]

Google Chrome
Google Chrome has, as of June 2012, become the most widely used web browser in
the world, and it has done so with good reason. In addition to having a clean and
simple user interface, it supports a library of extensions and add-ons, has a number
of developer tools built-in, and it has its own task manager, which allows you to
view and manage your memory and CPU usage. This is very useful for debugging
enterprise applications and developing for optimal performance.

It comes with built-in developer tools. Just right-click on a web page and click on
Inspect Element. Likewise, you can click on the View menu, then Developer, and
then Developer Tools. This will open up a section at the bottom of the browser
window, which has a number of tools at your disposal including a DOM and CSS
editor, a view for HTML5 local storage, a JavaScript profiler, and even a performance
auditor as shown in the following screenshot:

www.ebookee.org

http://www.ebookee.org/

Chapter 2

[49]

If you want to try new features before their final release, you
can download Chrome versions through different release
channels from the following link:
http://www.chromium.org/getting-involved/
dev-channel

Here you will find four different channels:

•	 Stable channel: This is the final version already tested.
•	 Beta channel: This channel is updated every week,

with major updates every six weeks.
•	 Dev channel: This channel is updated once or twice

weekly, it is tested but likely to have bugs.
•	 Canary build: This channel is updated daily, not

previously tested or used, likely to have bugs and may
not even run at all. This version can run in parallel
with any other channel.

www.ebookee.org

http://www.ebookee.org/

HTML5 Starter Kit: Useful Tools

[50]

Safari
Safari by Apple Inc. is both extensible and has some developer tools built in.
The developer tools, however, are hidden by default. To enable them, go to
Advanced preferences and check Show Develop menu in menu bar as shown
in the following screenshot:

Much like in Google Chrome (which uses the same WebKit engine as Safari) and
Firefox, you can right-click anywhere on a web page and click on Inspect Element to
view the Web Inspector. You can also click on the Develop menu and click on Show
Web Inspector. Safari's Web Inspector offers almost the same tools provided by
Chrome's Developer Tools including a DOM editor (here called the Snippet Editor),
a profiler, and a view of local storage.

www.ebookee.org

http://www.ebookee.org/

Chapter 2

[51]

Additionally, Safari can be augmented with extensions although the selection
is not as robust as that of Firefox. Safari extensions can be found at
https://extensions.apple.com.

Internet Explorer
Within the context of developer tools for enterprise application development, we will
cover only Internet Explorer 9 here. Internet Explorer 9 comes with developer tools
to inspect the DOM and make basic edits. It also includes tools to validate markup as
well as a profiler and HTTP sniffer. To view the developer tools, click on Tools and
then F12 developer tools. The developer tools should appear at the bottom of the
window, as shown in the following screenshot:

The developer tools also include two extra features: Browser Mode and Document
Mode. The Browser Mode feature allows you to select the version of Internet
Explorer, while Document Mode allows you to select which rendering engine
mode to use when rendering a page. The difference here is that Browser Mode
sets the default Document Mode and how the web browser identifies itself to the
server, while Document Mode can be changed by a web page by setting the X-UA-
Compatible meta tag; for example, to mimic the behavior of Internet Explorer 8 we
can use the following tag:

<meta http-equiv="X-UA-Compatible" content="IE=8">

Opera
Beginning as a research project in 1994, Opera was first released in 1996 with Version
2.0. Since then it has grown steadily in usage over the years although it has not seen
the explosive growth of Google Chrome. Still, it is used widely in countries such as
Ukraine and Belarus, and is considered one of the major web browsers in the market.

www.ebookee.org

http://www.ebookee.org/

HTML5 Starter Kit: Useful Tools

[52]

Opera uses its own rendering engine, called Vega, and its own JavaScript engine,
called Carakan. It comes with its own developer tools, called Opera Dragonfly, as
well. Dragonfly includes a DOM and CSS inspector as well as a JavaScript console and
profiler. To view Dragonfly, right-click anywhere on a web page and click on Inspect
Element, or click on View, then navigate to Developer Tools | Opera Dragonfly; we
should see a code inspector like the one shown in the following screenshot:

HTTP proxies
Web proxies can be used to capture HTTP traffic to and from your web browser to
see, at a low level, just how it is to be talking to the server and what data is being
returned. Although the use of HTTP proxies will be covered more in depth later
when we talk about debugging, it is useful to familiarize yourself with these tools.

www.ebookee.org

http://www.ebookee.org/

Chapter 2

[53]

Charles
Charles is a widely used web proxy that has versions for Windows, Mac OS, and
Linux. It includes many useful features such as bandwidth throttling, where you
can simulate lower bandwidth connections to see how your application performs
with limited connectivity. It can also be used as a reverse proxy, where it acts as a
middleman and redirects traffic that it captures. This is useful for debugging web
applications on devices such as the Apple iPad that do not natively support use of
a web proxy.

More information about Charles can be found at http://www.charlesproxy.com/.

Fiddler
Fiddler is a web proxy that is built specifically for Windows and requires the
.NET Framework Version 2.0 or later. It has several add-ons that allow you to extend
its behavior including syntax highlighting and traffic differ, which compares two
traffic profiles.

More information on Fiddler can be found at http://www.fiddler2.com/.

Summary
In this chapter we covered a variety of tools required for any enterprise application
web development, including editors, IDEs, web servers, web browsers, and
HTTP proxies.

While there is a wealth of tools out there to help you get started with HTML5
enterprise application development, it is important to understand their uses.
Furthermore, it is important to understand your needs and to find the tools that
match those needs. As they say, "It is a poor workman who blames his tools".

In the next chapter, we will dive head-first into our MovieNow application,
beginning with structure and semantics. We will discuss the overall layout of the
pages, the semantic tags needed, and we will cover techniques such as responsive
web design that will govern how our app will look on different devices.

www.ebookee.org

http://www.ebookee.org/

www.ebookee.org

http://www.ebookee.org/

The App: Structure
and Semantics

Now that we have walked through some useful tools and key ideas, we can begin
with our enterprise application case study: MovieNow.

This chapter will cover the main aspects of HTML page structure, applying the
correct use of HTML5 semantic tags. Also we are going to cover the use of microdata
and best practices for Search Engine Optimization (SEO). Finally, we are going to
introduce the concept of Responsive Web Design (RWD) as a technique to support
mobile development discussing the pros and cons therein as well as alternatives.
By the end of the chapter, we will have an HTML page with basic styling but with
a layout that can be easily read by any web developer with a basic understanding
of HTML.

The main topics covered in this chapter are as follows:

•	 Understanding page structure
•	 Metadata
•	 Microdata
•	 Favicons and icons
•	 CSS3 resets
•	 Sticky footer
•	 General styling
•	 Responsive web design and adaptive web design

www.ebookee.org

http://www.ebookee.org/

The App: Structure and Semantics

[56]

Understanding page structure
Since we already gave you an introduction to semantic tags and page elements in the
Preface, we are now going to put that knowledge into practice and go deeper into the
meaning and use of each tag, while following the natural order of construction of our
HTML5 enterprise application.

A common layout for web applications is as follows:

The core structure of any HTML file includes a DOCTYPE declaration, an html root
node, and body and head tags:

<!DOCTYPE html>
<html lang="en">
<head>
</head>
<body>
</body>
</html>

www.ebookee.org

http://www.ebookee.org/

Chapter 3

[57]

From this point, we can define the layout in any way we want. Usually, but not
always, a page will contain a header section specifying the company or product logo
and some copy, a footer section with copyright information and some links to further
information such as terms and conditions, a navigation area with links to each
section, and the content area. Before HTML5, we would typically define sections
using the class attribute or the id attribute of generic HTML tags such as the div
and span tags. HTML5, however, streamlines this by offering predefined tags for
such standard sections. We can now use <header> to contain the main navigation
and/or initial content, <footer> for copyright information and alternative
navigation content, <nav> for navigation area, and <section> for other content
containers. This allows us to standardize our content from site to site.

The following is one way we can define the semantics of our page using
HTML5 tags:

<!DOCTYPE html>
<html lang="en">
<head>
 <title>MovieNow</title>
</head>
<body>
 <header>MovieNow</header>
 <nav></nav>
 <section><section>
 <footer>
 Copyright © 2012 MovieNow. All rights reserved.
 </footer>
</body>
</html>

We can have as many header and footer tags in
an HTML page as we want, if they are in different
containers. It may sound unintuitive, but it makes sense
when you think of each container as a logical group of
related content independent of sibling content.

As a general rule, when we have multiple header and footer tags, they should
be contained in body, article, and section tags. Although there is no technical
restriction on where semantic tags are positioned, we should maintain a structure
that facilitates readability for web developers as well as search engine web crawlers.

www.ebookee.org

http://www.ebookee.org/

The App: Structure and Semantics

[58]

To add the main content, we can put an article tag in our section tag. Inside of
it, we can place an h1 tag for the main heading and a p tag for each paragraph. The
resulting HTML looks as follows:

<section>
 <article>
 <h1>Home Title</h1>
 <p>Home content</p>
 </article>
</section>

Navigation list
Unordered lists are, generally, the accepted way of representing navigation on
websites since they have a cohesive semantic structure. Therefore, in our main
nav tag, we can use an unordered list, ul, with embedded list elements (li):

 Home

Secondary content
To finalize our main structure, we will need a sidebar that will display the top five
box office movies. Since this section will be ancillary to the main content, we will use
the aside tag. Inside the aside tag, we will place a heading with an h2 tag. We use
h2 rather than h1 because this represents the next level in the overall outline of the
page content. To represent the list of movies, numerical order is important, which
means that the best structure to use is an ordered list.

The result should look something like the following code:

<aside>
 <h2>Top 5 Box Office</h2>

 <li
 <h3>Dark Knight Rises</h3>
 <p>Action</p>

 <h3>Avengers</h3>
 <p>Action</p>

www.ebookee.org

http://www.ebookee.org/

Chapter 3

[59]

 <h3>Ice Age: Continental Drift</h3>
 <p>Animation</p>

 <h3>The Amazing Spider-Man</h3>
 <p>Action</p>

 <h3>Dark Shadows</h3>
 <p>Comedy</p>

</aside>

Do not worry about the content just yet. For now, we will use sample data to
demonstrate the page structure. In later chapters, we will populate this section
with data from a web service.

Metadata
Until now we have been building the main structure of the MovieNow application
with HTML5 semantic tags; however, there is a common misunderstanding about
the effect of semantic tags in SEO. Use of semantic tags does not necessarily translate
to higher search engine rankings. Nevertheless, they simplify the analysis of the
content by web crawlers driving traffic to your application for specific searches
related to the semantic content. In essence, they make your application more like
an open book.

As a theoretical example, it will be far easier for a web crawler to determine the most
important content in a specific page if this content is enclosed in an article tag,
than if it is enclosed in a div tag that has no semantic meaning.

In order to provide search engine data to connect page content to the search queries
that will inevitably bring people to your website or application, meta tags are
a perfect solution. Meta tags store information about the web page—known as
metadata—that is not necessarily visible to end users (unless you reveal the page
source code). We can specify as many meta tags as we want. Search engine web
crawlers often look to these meta tags for further information about the page content
that cannot be ascertained by the display content itself.

www.ebookee.org

http://www.ebookee.org/

The App: Structure and Semantics

[60]

Meta tags are contained in the head tag with the type of content defined by the
property name and the content by the attribute content. The following are some
of the most common meta tags:

<head>
 <title>MovieNow</title>
 <!-- Charset Encoding -->
 <meta charset="utf-8" />
 <!-- Description of MovieNow -->
 <meta name="description" content="Your movie theater finder" />
 <!-- Author or Authors of MovieNow -->
 <meta name="author" content="Me" />
 <!-- Keywords (recognized by certain search engines -->
 <meta name="keywords" content="movie, hollywood" />
 <!-- Copyright information -->
 <meta name="copyright" content="Copyright © 2012 MovieNow. All
rights reserved." />
</head>

Usually search engine results will display links where the main link text comes
from the title tag and the description that appears underneath the meta tag with
name="description". As an example, when we search for the word "movies", we
will find fandango.com listed in the search results:

If we inspect the code on fandango.com by viewing the source, we can see the
following in the head tag:

<meta http-equiv="X-UA-Compatible" content="IE=Edge;chrome=1" > <meta
name="viewport" content="width=980">
<title>Movie Tickets & Movie Times - Fandango.com</title>
<meta name="robots" content="noydir,noodp" id="MetaRobot" />
<meta name="description" content="Buy movie tickets in advance,
find movie times, watch trailers, read movie reviews, and more at
Fandango." />

You can even define your own meta tags if you want. Search engines may
overlook them as they may not be aware of them, but they may prove themselves
useful for providing specific data to other developers or other applications you
may want to write.

www.ebookee.org

http://www.ebookee.org/

Chapter 3

[61]

Google does not take the keywords meta tag into consideration,
according to http://googlewebmastercentral.
blogspot.com/2009/09/google-does-not-use-
keywords-meta-tag.html; instead it uses description
and others in conjunction with a series of specific Google search
engine meta tags. SEO experts advise placing keywords in the
title tag, the URL, and in the H1 tag.

Meta tags also provide additional functionality by allowing the web developer to
inform the web browser about certain characteristics of the web page.

To prevent the page from being automatically translated to the client language, you
can specify the following code:

<meta name="google" content="notranslate" />

To direct the behavior of Google web crawlers (known as Googlebots), specify the
following code:

<meta name="googlebot" content="..., ..." />

To tell search engine web crawlers whether to inspect the content of a page or not,
specify the following code:

<meta name="robots" content="..., ..." />

With the robots meta tag, you can include any or all of the following list separated
by commas:

•	 noindex: This prevents the page from being indexed altogether
•	 nofollow: This prevents search engines from following links inside the page
•	 noarchive: This prevents search engines from showing a cached link for

the page

For example, the following meta tag suggests to search engines that they should not
index the page and follow links on the page for further indexing:

<meta name="robots" content="noindex, nofollow" />

Depending upon each search engine implementation,
the suggestions declared on meta tags can be ignored.

If your enterprise application is mentioned on Twitter, you can add new meta tags
that will be interpreted by Twitter when someone tweets (posts) a link to your page
for display on Twitter streams.

www.ebookee.org

http://www.ebookee.org/

The App: Structure and Semantics

[62]

To include a title, description, and a thumbnail image for your page when referenced
by a tweet, you can add the following code:

<meta name="twitter:card" value="summary" />

For the Twitter account associated with the website, you can add the following code:

<meta name="twitter:site" value="@username" />

These meta tags define for Twitter certain data that it can use to express more
about your web page it mentions. For more information about meta tags, see the
following page:

https://dev.twitter.com/docs/cards

Facebook also has meta tags it defines for expressing metadata about links to web
resources. For more information about Facebook's meta tags, see the following page:

http://developers.facebook.com/docs/opengraphprotocol/

Microdata
We have the ability to define metadata at the page level but what about metadata on
specific elements on the page? Microdata provides us with the answer. Microdata is
an HTML specification used to add more information to HTML tags.

An interesting read to understand how Google manages metadata
and microdata can be found at http://support.google.com/
webmasters/bin/answer.py?hl=en&answer=99170.

We previously defined HTML5 syntax for a list of movies. Now we can specify
the meaning of each tag that defines a movie. First, we need to identify the item
or container using the itemscope attribute:

<li itemscope>
 <h3>Dark Knight Rises</h3>
 <p>Action</p>

Now we can specify the type of content using the itemprop attribute and the word
that defines the type of content, in this case name and genre:

<li itemscope>
 <h3 itemprop="name">Dark Knight Rises</h3>
 <p itemprop="genre">Action</p>

www.ebookee.org

http://www.ebookee.org/

Chapter 3

[63]

Here we need to rely on the importance of standards; while you can define
microdata in the way you prefer, the goal is to create a unified way to define
the data in a way any web crawler or reader implementation can read it.

Suppose that we decide to define MovieNow's microdata in a way that it can be
easily analyzed. We would need to share a common schema with other applications.
A possible solution to this is schema.org:

Schema.org provides a collection of schemas, i.e., html tags, that webmasters can
use to markup their pages in ways recognized by major search providers. Search
engines including Bing, Google, Yahoo! and Yandex rely on this markup to
improve the display of search results, making it easier for people to find the right
web pages.

Using this site, we need to only search for the kind of data needed. Searching for
movie, we get a page with a movie schema: http://schema.org/Movie.

www.ebookee.org

http://www.ebookee.org/

The App: Structure and Semantics

[64]

As you can see the list includes name and genre attributes, so we only need to add
the schema to our container tag using the itemtype attribute:

<li itemscope itemtype="http://schema.org/Movie">
 <h3 itemprop="name">Dark Knight Rises</h3>
 <p itemprop="genre">Action</p>

Any system that uses this schema will recognize our items as movies as well as the
corresponding names and genres.

Google provides an online tool to test site microdata. This is available at
http://www.google.com/webmasters/tools/richsnippets.

Favicons and icons
Now let us talk about some uses of the descriptive attribute link. As we develop
our application, we will need to have icons to represent our product. Such icons can
be shown not only inside our HTML, but also in browser tabs, bookmark lists, and
home screen icons in the case of iOS, and some Android devices.

All images required are located in the img folder in
our sample files.

A favicon, or favorite icon, is an image used by the browser to identify a website or
web application. Usually, favicons are 16 x 16 pixels and formatted as a .png, .gif
(including animated GIFs), or .ico – the last one being the most supported file format.

The ico file format was introduced by Microsoft Windows
to contain one or more images at multiple sizes and color
depths, so they can be scaled appropriately depending of
the application requirements. Other non-Microsoft browsers
adopted this format later to maintain compatibility.

To create a favicon, we can use any graphic editor program in the market such as
Adobe Photoshop or Fireworks. Other possible solutions are the web tools such as
favicon.cc (http://www.favicon.cc/). Favicon.cc allows you to upload an image
and edit it using a pixel tool; this is shown in the following screenshot:

www.ebookee.org

http://www.favicon.cc/
http://www.ebookee.org/

Chapter 3

[65]

Although it is a great tool, there are downsides which include the lack of layers and
undo/redo functionality.

When possible, try to export your favicon as an ico format, unless
you want to use an animated GIF. Be aware that ico is a file format
itself, so you need to use an image editor and export to the ico
format. Simply renaming it with the ico extension will not work.

To make your application aware of your favicon, specify the name, location, and/or
the format in a link tag inside your head tag as follows:

<head>
 <title>MovieNow</title>
 <!-- Charset Encoding -->
 <meta charset="utf-8" />
 <!-- Description of MovieNow -->
 <meta name="description" content="Your movie theater finder" />
 <!-- Author or Authors of MovieNow -->
 <meta name="author" content="Me" />
 <!-- Keywords (recognized by certain search engines -->
 <meta name="keywords" content="movie, hollywood" />
 <!-- Copyright information -->
 <meta name="copyright" content="Copyright © 2012 MovieNow. All
rights reserved." />
 <!-- favico -->
 <link rel="shortcut icon" href="img/favicon.ico" type="image/x-icon"
/>
</head>

www.ebookee.org

http://www.ebookee.org/

The App: Structure and Semantics

[66]

Notice the use of the attribute rel to identify the relationship of the image with the
web page, as well as the use of the attribute href to indicate image location, and
type to specify the MIME type of the image. As a result you will see an image in the
browser tab, address bar, and the favorites/bookmarks lists. In case of Firefox on
Mac, you will see something like the following screenshot:

By default, if there is no link tag with rel="shortcut icon",
web browsers will look for your favicon in the server root
directory as a file named favicon.ico.

Since Version 1.1.3, iOS devices allow you to add a home screen icon as a shortcut
for a mobile website or application. To add an icon for our enterprise application,
we need to take into consideration the fact that there are multiple sizes depending
on the device. For iPhones/iPods prior to Retina display technology, icons should be
57 x 57 px while iPhones/iPods with Retina display technology should have icons
that are 114 x 114 px. For iPads prior to Retina display, icons should be 72 x 72 px,
and with Retina display they should be 144 x 144 px.

Here we can see the difference between a regular display (left) and a Retina
display (right):

www.ebookee.org

http://www.ebookee.org/

Chapter 3

[67]

If there is no specification about the icons in the head, iOS devices will attempt to
find an icon. Otherwise, the icon will be a section of a print screen of the application.

For example, if you have an iPod without Retina display, it will try to find an icon in
the root directory with a filename by going down the following list:

1.	 apple-touch-icon-57x57-precomposed.png.
2.	 apple-touch-icon-57x57.png.
3.	 apple-touch-icon-precomposed.png.
4.	 apple-touch-icon.png.
5.	 Generates an icon taking a print screen and using a section of it.

Retina display devices can use the same size images as non-Retina display
devices, but the quality will be much poorer and, in some cases, you will notice
some pixelation.

In our enterprise application, we are going to specify icons for each case using
the link tag inside our head tag. The way to declare iOS icons in a link is to use
apple-touch-icon in the rel attribute, the icon path in the href attribute, and
finally the size in the sizes attribute:

<link rel="apple-touch-icon" href="img/touch-icon-iphone-rd.png"
sizes="114x114" />

Considering all devices, we should have something that looks like the
following code:

<head>
 <title>MovieNow</title>
 <!-- Charset Encoding -->
 <meta charset="utf-8" />
 <!-- Description of MovieNow -->
 <meta name="description" content="Your movie theater finder" />
 <!-- Author or Authors of MovieNow -->
 <meta name="author" content="Me" />
 <!-- Keywords (recognized by certain search engines -->
 <meta name="keywords" content="movie, hollywood" />
 <!-- Copyright information -->
 <meta name="copyright" content="Copyright © 2012 MovieNow. All
rights reserved." />
 <!-- favico -->
 <link rel="shortcut icon" href="img/favicon.ico" type="image/x-icon"
/>

www.ebookee.org

http://www.ebookee.org/

The App: Structure and Semantics

[68]

 <!-- Apple iOS icons -->
 <!—- iPhone 57x57 -->
 <link rel="apple-touch-icon" href="img/touch-icon-iphone.png" />
 <!—- iPad 72x72 -->
 <link rel="apple-touch-icon" href="img/touch-icon-ipad.png"
sizes="72x72" />
 <!—- iPhone Retina Display 114x114 -->
 <link rel="apple-touch-icon" href="img/touch-icon-iphone-rd.png"
sizes="114x114" />
 <!—- iPad Retina Display 144x144 -->
 <link rel="apple-touch-icon" href="img/touch-icon-ipad-rd.png"
sizes="144x144" />
</head>

By default, iOS adds rounded corners and reflective shine effects to icons, but we
can remove the reflective shine using apple-touch-icon-precomposed instead of
apple-touch-icon as a rel value.

The previous image shows the difference between our original image, the default
reflective shine effect icon, and the icon without the reflective shine effect. In our
example files, we use a non-reflective version because we want to show the original
image in more detail. Nevertheless, this often boils down to a mere design detail.

CSS3 resets
Now that we have our overall page structure, we are ready to start adding some
styles to our enterprise application. A good practice before jumping into styling
with CSS is resetting default styles to work with the same initial conditions in all
browsers. If you already know how to declare CSS reset styles, you can skip this
section and continue to the Responsive web design and adaptive web design section.

www.ebookee.org

http://www.ebookee.org/

Chapter 3

[69]

A CSS reset defines an initial set of styles to remove or standardize across browsers'
default values of some properties such as margins, paddings, and so on. There are
several versions of CSS resets; the most common ones are the Yahoo User Interface
(YUI) CSS Reset (http://developer.yahoo.com/yui/reset/), the HTML5 Doctor
Reset (http://html5doctor.com/html-5-reset-stylesheet/), Nicolas Gallagher's
normalize.css (http://necolas.github.com/normalize.css/), and Eric Mayer's
Reset (http://meyerweb.com/eric/thoughts/2011/01/03/reset-revisited/).

We are going to take styles from Eric Mayer's Reset and YUI's Reset to build our
own. First, we will need to create a CSS file. Name it styles.css and save it in a
folder called css under the root of the application.

To be recognized and applied by the HTML file, we have to import the file using
a link tag with the attribute rel="stylesheet", type="text/css", and href
pointing to our CSS file:

<link rel="stylesheet" href="css/styles.css" type="text/css" />

We are going to import modernizr too, adding HTML5 tags support for older
browsers and browser capabilities detection. The head tag should look as follows:

<head>
 <title>MovieNow</title>
 <!-- Charset Encoding -->
 <meta charset="utf-8" />
 <!-- Description of MovieNow -->
 <meta name="description" content="Your movie theater finder" />
 <!-- Author or Authors of MovieNow -->
 <meta name="author" content="Me" />
 <!-- Keywords (recognized by certain search engines -->
 <meta name="keywords" content="movie, hollywood" />
 <!-- Copyright information -->
 <meta name="copyright" content="Copyright © 2012 MovieNow. All
rights reserved." />
 <!-- favico -->
 <link rel="shortcut icon" href="img/favicon.ico" type="image/x-icon"
/>
 <!-- Apple iOS icons -->
 <!—- iPhone 57x57 -->
 <link rel=" apple-touch-icon-precomposed" href="img/touch-icon-
iphone.png" />
 <!—- iPad 72x72 -->
 <link rel=" apple-touch-icon-precomposed" href="img/touch-icon-ipad.
png" sizes="72x72" />

www.ebookee.org

http://www.ebookee.org/

The App: Structure and Semantics

[70]

 <!—- iPhone Retina Display 114x114 -->
 <link rel=" apple-touch-icon-precomposed" href="img/touch-icon-
iphone-rd.png" sizes="114x114" />
 <!—- iPad Retina Display 144x144 -->
 <link rel=" apple-touch-icon-precomposed" href="img/touch-icon-ipad-
rd.png" sizes="144x144" />
 <!-- Cascade Style Sheet import -->
 <link rel="stylesheet" href="css/styles.css" type="text/css" />
 <script src="js/modernizr.js" type="text/javascript"></script>
</head>

In styles.css, we are going to start resetting spaces and font styles. Basic spacing
involves margin and padding properties as you can see in the diagram:

For these properties (and for the border property), we can set styles in several ways.

Individual sides
You can set the top, right, bottom, and left margin to 0 like so:

margin-top:0;
margin-right:0;
margin-bottom:0;
margin-left:0;

As we are using 0 as a value, we do not need to specify the unit (% or px). You can
apply the same to the padding and border.

www.ebookee.org

http://www.ebookee.org/

Chapter 3

[71]

Shorthand
A best practice is to declare margin properties in one block. This is known as
shorthand. The shorthand syntax for margin and padding starts from the top
property and is followed by the others in a clockwise manner:

margin:top right bottom left;

We can specify only two values:

margin:value-1 value-2;

This is the same as:

margin:value-1 value-2 value-1 value-2;

Or only 1 value:

margin:value-1;

This is equal to:

margin:value-1 value-1 value-1 value-1;

We need to reset outline and border too, so putting it all together we should have
the following:

margin:0;
padding:0;
border:0;
outline:0;

The shorthand for border can include color and style too.
For example, border:5px solid blue;.

Additionally, we will need to keep the treatment of text standard across browsers.
One fix to avoid exaggerated resizes of text in Internet Explorer is font-size:100%;.
To force font inheritance from parent elements, we can use the shorthand
font:inherit. However, to avoid problems with Internet Explorer 6 and 7, we
must use the CSS properties font-weight, font-style, and font-family.

To set the vertical alignment using baselines of elements with their parents, we
declare vertical-align:baseline.

www.ebookee.org

http://www.ebookee.org/

The App: Structure and Semantics

[72]

So far we have the following as our reset:

html, body, div, span, applet, object, iframe,
h1, h2, h3, h4, h5, h6, p, blockquote, pre,
a, abbr, acronym, address, big, cite, code,
del, dfn, em, img, ins, kbd, q, s, samp,
small, strike, strong, sub, sup, tt, var,
b, u, i, center,
dl, dt, dd, ol, ul, li,
fieldset, form, label, legend,
table, caption, tbody, tfoot, thead, tr, th, td,
article, aside, canvas, details, figcaption, figure,
footer, header, hgroup, menu, nav, section, summary,
time, mark, audio, video{
 margin:0;
 padding:0;
 border:0;
 outline:0;
 font-size:100%;
 font-weight: inherit;
 font-style: inherit;
 font-family: inherit;
 vertical-align:baseline;
}

By default, tables have a separation between cells. To avoid this, we can reset the
table styles using border-collapse:collapse and border-spacing:0.

The reset style should look as follows:

table{
 border-collapse:collapse;
 border-spacing:0;
}

www.ebookee.org

http://www.ebookee.org/

Chapter 3

[73]

We will need to clear the font styles and weight because in certain browsers some
tags apply special styles such as bold and italic:

address,caption,cite,code,dfn,em,strong,th,var{
 font-style:normal;
 font-weight:normal;
}

To remove markers from ordered (ol) and unordered (ul) lists, we can set the
list-style property to none:

ol, ul{
 list-style:none;
}

To set the main HTML5 tags as block boxes and avoid inconsistences across browsers:

article, aside, details, figcaption, figure,
footer, header, hgroup, menu, nav, section{
 display:block;
}

To remove quotes from tags, for long quotation (blockquote) and short quotation (q):

blockquote, q{
 quotes:none;
}

To assure that quotes really disappear across all browsers:

blockquote:before, blockquote:after,
q:before, q:after {
 content:'';
 content:none;
}

Remember that outline is used when the element is on focus, so we need to redefine
or nullify it using 0 with the :focus selector. In this case, we redefine a dotted gray
line of 1 pixel:

:focus{
 outline:1px dotted #666;
}

Looks like a lot of code for a simple reset, but most of it is a result of inconsistencies
across browser implementations. Resets provide a level playing field on which we
can build our application.

www.ebookee.org

http://www.ebookee.org/

The App: Structure and Semantics

[74]

Sticky footer
CSS sticky footer layout allows you to maintain our footer at the bottom of the page
even if there is not enough content to push it down. If the content exceeds the height
of the page, our footer will move to the end of the scroll.

At this point our enterprise application should look like the following screenshot:

We would like our footer to stick to the bottom of the page. To achieve this, there
are several implementations. We are going to follow one of the most common
implementations that consists of two containers and a .push element that reserves
the space for our footer:

www.ebookee.org

http://www.ebookee.org/

Chapter 3

[75]

To begin, we will add some tags to our current structure: a section tag with the
class wrapper to separate all our tags from the footer, a div tag with the class main to
contain page tags at the same level, and finally a div tag with the class push, to create
space inside the wrapper section, allowing footer to be over the wrapper class:

<body class="no-js">
 <section class="wrapper">
 <div class="main">
 <header>MovieNow</header>
 <nav>

 Home

 </nav>
 <aside>
 <h2>Top 5 Box Office</h2>

 <li itemscope itemtype="http://schema.org/Movie">
 <h3 itemprop="name">Dark Knight Rises</h3>
 <p itemprop="genre">Action</p>

 <li itemscope itemtype="http://schema.org/Movie">
 <h3 itemprop="name">Avengers</h3>
 <p itemprop="genre">Action</p>

 <li itemscope itemtype="http://schema.org/Movie">
 <h3 itemprop="name">Ice Age: Continental Drift</h3>
 <p itemprop="genre">Animation</p>

 <li itemscope itemtype="http://schema.org/Movie">
 <h3 itemprop="name">The Amazing Spider-Man</h3>
 <p itemprop="genre">Action</p>

 <li itemscope itemtype="http://schema.org/Movie">
 <h3 itemprop="name">Dark Shadows</h3>
 <p itemprop="genre">Comedy</p>

 </aside>
 <section>
 <article>
 <h1>Home Title</h1>
 <p>Home content</p>
 </article>

www.ebookee.org

http://www.ebookee.org/

The App: Structure and Semantics

[76]

 </section>
 <div>
 <div class="push"></div>
 </section>
 <footer>Copyright © 2012 MovieNow. All rights reserved.</
footer>
</body>

Now we style our structure.

We need to expand the height of html, body, and .wrapper.

html, body, .wrapper {
 height: 100%;
}

We then need to add height:auto and min-height for compatibility reasons and
overflow:hidden to expand the .wrapper container when the content inside
(that can be floated) grows:

body > .wrapper{
 height:auto;
 min-height:100%;
 overflow:hidden;
}

We can apply overflow to .main to expand too:

.main{
 overflow:hidden;
}

The overflow:hidden technique to enclose content should
be used with caution. Its biggest downside is that it hides
the absolute positioned content that is outside of the box.
An alternative is Clearfix. In our case, we will then not need
overflow:hidden in .main and body > .wrapper:

body > .wrapper:after, .main:after {
 content:".";
 display:block;
 height:0;
 clear:both;
 visibility:hidden;
}

www.ebookee.org

http://www.ebookee.org/

Chapter 3

[77]

We can then assign the same height to footer and .push. Both will align and we can
use clear in case we need to add a floating element:

footer,.push{
 height:2.0em;
 clear:both
}

As a final step, we assign a negative margin value with the same value as height to
our footer tag and position:relative for compatibility reasons:

footer{
 position:relative;
 margin-top:-2.0em;
}

General styling
With our sticky footer, we can continue with some basic styling. We can set the
overall font family:

html,*{
 font-family:Helvetica,Arial, sans-serif;
}

There is a debate about the performance implications of
the universal selector *. While some authors discourage
its use, others say CSS selectors are irrelevant in terms of
web performance.

To position our top five box office to the right and set its width property:

aside{
 float:right;
 width:200px;
}

Let us add a background color to our main navigation menu:

nav{
 background-color:#666;
}

Notice that we are using the shorthand version of
hexadecimal colors.

www.ebookee.org

http://www.ebookee.org/

The App: Structure and Semantics

[78]

As a decoration, we can add a background image to header. By default, it will tile
the image unless we specify no-repeat to our background property. We can then
set color and height too:

header{
 color:#fff;
 height:122px;
 background:#1A1A1A url(../img/logo_back.png);
}

We can define the color of our footer, as well as color of font, font-size,
line-height (to center the text vertically) and text-align to center text horizontally:

footer{
 background-color:#000;
 color:#fff;
 font-size:.6em;
 line-height:2em;
 text-align:center;
}

Set our wrapper background color:

.wrapper{
 background-color:#fff;
}

We can define a fixed width for our content and we use auto for side margins to
center our container tags:

.wrapper,footer{
 width:960px;
 margin:0 auto;
}

We add a div tag into our header tag to contain the application name and logo:

<header><div>MovieNow</div></header>

We define width, height, and our logo image using the text-indent property to
hide text content inside div:

header div{
 width:320px;
 height:122px;
 background:url(../img/logo.png);
 text-indent:-9999px;
}

www.ebookee.org

http://www.ebookee.org/

Chapter 3

[79]

Using -9999px in text-indent displaces our text to the left out of the visible area.

For accessibility and SEO considerations, it is a good practice to
maintain application name as text. Other techniques can be seen
at http://css-tricks.com/css-image-replacement/.

Set the color of the columns at each side:

html,body{
 background-color:#ccc;
}

Define wrapper padding:

.wrapper section,nav{
 padding:5px 35px;
}

We then remove link underlines and assign white color to all links inside our
navigation bar:

nav a{
 color:#fff;
 text-decoration:none;
}

Add an underline on hover:

nav a:hover{
 text-decoration:underline;
}

Change the font size of headings:

article h1{
 font-size:1.5em;
 margin:10px 0 5px;
}

Add color to our top five list:

aside{
 padding:30px 0 10px 0;
 margin:0 10px;
 background-color:#E4E4E4;
}

www.ebookee.org

http://www.ebookee.org/

The App: Structure and Semantics

[80]

Content properties allow you to define and increment a variable:
•	 counter-reset:variable; resets variable to 1
•	 counter-increment:variable; increments 1

to variable
•	 content:counter(variable); shows the value

of variable inside the tag

We can add padding and a counter variable to set the number for each movie on
our top five:

aside ol{
 padding:0 0 0 36px;
 counter-reset:counter;
}

We can use our counter content:counter(counter), reset it using
counter-reset:counter;, and increment it using counter-increment:counter.
We can then add some spacing and set the font color:

aside ol li:before {
 counter-increment:counter;
 content:counter(counter) ". ";
 margin-right:5px;
 color: #333;
 position:absolute;
 top:0;
 left:-16px;
}

Counter properties are not supported in Internet Explorer 7.
Internet Explorer 8 only supports them if !DOCTYPE is specified.
You can assign the default management of ordered lists for IE7
and previous versions including a conditional CSS import:

<!--[if lte IE 7]>
 <link rel="stylesheet" href="css/ie7.css"
type="text/css" />
<![endif]-->

Where ie7.css contains:
ol{
 list-style:decimal;
}

www.ebookee.org

http://www.ebookee.org/

Chapter 3

[81]

Add more spacing, set the font size, and add a decorative dashed border:

aside h2{
 padding:0 20px 10px;
 margin:0 0 20px;
 border-bottom:1px dashed #fff;
 font-size:1.3em;
}

Set a different color for movie genres:

aside li p{
 color:#999;
}

Finally, add color to movie titles:

aside li{
 color:#666;
 font-size:.8em;
 line-height:1.2em;
 margin:0 0 8px 0;
 position:relative;
}

Our application is now structured and looks like the following screenshot:

www.ebookee.org

http://www.ebookee.org/

The App: Structure and Semantics

[82]

Responsive web design and adaptive
web design
Our application is taking form, but with so many devices and screen resolutions how
can we support all of them?

Responsive web design is a fairly modern answer to this question. Responsive web
design results from applying fluid grids and media queries to adapt the layout to the
viewing environment. http://mediaqueri.es/ is an illustrative guide about how to
apply responsive web design in real world cases.

Using responsive web design, we can tackle many issues related to the diversity
of environments.

For example, consider the following ways in which we can tackle issues that
may arise:

•	 Controlling the size of the site when it is accessed on mobile devices
•	 Serving high-resolution images for retina display devices
•	 Changing user experience according to the device used

In responsive web design, media queries detect conditions such as screen resolution
and based on that we can apply different styles.

A media query is formed specifying a media type (screen, print, and so on) and a
series of features (max-width, min-width, min-device-pixel-ratio, and so on).

For example:

@media screen and (min-device-pixel-ratio: 2) and (max-device-width:
480px) {}

For a more detailed explanation of the syntax, you can go to
http://www.w3.org/TR/css3-mediaqueries/.

The following are the three ways to use media queries:

www.ebookee.org

http://www.ebookee.org/

Chapter 3

[83]

Importing CSS files using media queries
It is possible to specify which CSS file to import using media queries and the link
tag in the head tag. In the following example, we load iphone4.css when retina
display is detected and the device screen width is less than or equal to 480 px:

<link rel="stylesheet" type="text/css" href="iphone4.css" media="
screen and (-webkit-min-device-pixel-ratio: 2) and (max-device-width:
480px)" />

Importing other CSS from our main CSS
We can import CSS files inside other CSS using @import. Here we can load
iphone4.css when retina display is detected and the device screen width is
less than or equal to 480 px:

@import url(iphone4.css) screen and (-webkit-min-device-pixel-ratio:
2) and (max-device-width: 480px);

Using media queries as conditionals in our
main CSS
This is the most used technique and consists of media queries as conditionals inside
our CSS. We are going to use this technique for our application, so let us define some
media queries.

First, we define special styles for width between 738 px and 1024 px. This is applicable
to many tablets in the market today. Here we are going to remove spaces and use the
complete width of the device setting width for wrapper and footer to 100%:

/** TABLETS **/
@media only screen and (min-width: 738px) and (max-width: 1024px){
 .wrapper,footer{
 width:100%;
 }
}

Defining a case for devices less than 737 px width:

/** PHONES AND SMALL TABLETS **/
@media only screen and (max-width: 737px){
 aside{
 display:none
 }
 .wrapper,footer{
 width:100%;
 }

www.ebookee.org

http://www.ebookee.org/

The App: Structure and Semantics

[84]

 .wrapper section,nav{
 padding:5px 15px;
 }
 header div{
 background-position:-50px 0px
 }
}

We can add a special case for devices with a pixel ratio superior to 2, which is the
case with Apple Retina display devices. In the style, we use a high definition version
of our logo:

/** RETINA DISPLAY IMAGES **/
@media only screen and (-webkit-min-device-pixel-ratio:2),
only screen and (min-device-pixel-ratio: 2){
 header div{
 background:url(../img/logo2x.png);
 -webkit-background-size: 320px 122px;
 }
}

While this technique doesn't download our logo image twice
if the Retina display image is required in a Safari mobile, we
need to consider that for other cases. It is better to define a
media query for each case and not rely on cascade override,
so we can avoid multiple loads of the same asset. You can see
other techniques at the following link:
http://timkadlec.com/2012/04/media-query-
asset-downloading-results/

We can add cases for iPhone and iPad Retina display as well by defining some
additional styles:

/** IPAD RETINA DISPLAY SPECIFIC **/
@media only screen and (-webkit-min-device-pixel-ratio:2) and
(min-device-width: 768px) and (max-device-width: 1024px),
only screen and (min-device-pixel-ratio: 2) and (min-device-width:
768px) and (max-device-width: 1024px){
 .wrapper,footer{
 width:100%;
 }
}
/** IPHONE RETINA DISPLAY SPECIFIC **/
@media only screen and (-webkit-min-device-pixel-ratio:2) and
(max-device-width: 480px),
only screen and (min-device-pixel-ratio: 2) and (max-device-width:
480px){
}

www.ebookee.org

http://www.ebookee.org/

Chapter 3

[85]

In iOS devices, scale starts with values superior to 100%. For that reason, we need to
add a line in our head tag to set the initial scale to 100%:

<meta name="viewport" content="width=device-width, initial-scale=1" />

Sadly, there is a scaling bug when you change between landscape
and portrait orientations. Thanks to Scott Jehl, we can solve this
problem by including a JavaScript library found at https://
github.com/scottjehl/iOS-Orientationchange-Fix.

If we view our application in a mobile device, we can see something like the
following screenshot:

www.ebookee.org

http://www.ebookee.org/

The App: Structure and Semantics

[86]

We can now have a set of different views in multiple evices and resolutions:

One by-product of using media queries in this way is that if you resize your browser
window you will see the different views. An alternative is to detect the device using
JavaScript and import different CSS and JavaScript files depending on each case.
This can be cumbersome. However, you will have to deterministically account for
all the variations.

Responsive web design is a good adaptive web design approach, where the behavior
of the application is dictated by the capabilities of the device.

Summary
We covered the main structure and basic styles for our application as well as
metadata and microdata. We introduced the usage of icons and common CSS
techniques such as sticky footers. Finally, responsive and adaptive web design
concepts were covered using real-world implementations that can be applied to
any enterprise application.

In the next chapter, we will introduce the use of HTML5 geolocation capabilities,
AJAX calls, and API usage.

www.ebookee.org

http://www.ebookee.org/

The App: Getting Movies
Via Geolocation

HTML5 introduced a built-in ability to determine where the user is. The geolocation
API defines a specification for using JavaScript to access location-based data for use
in your enterprise application. Understanding where the user is can be useful for
displaying news and services relevant to the user's locale.

The first major feature of our MovieNow application is the ability to find a list
of movies nearest to the user based on geolocation data. We will cover how the
geolocation API works as well as walk through the implementation of this feature.
Since this is our first feature, we will also walk through making requests using
Asynchronous JavaScript and XML (AJAX).

We will cover the following topics:

•	 How it works
•	 The API
•	 A simple request
•	 Movies near you

www.ebookee.org

http://www.ebookee.org/

The App: Getting Movies Via Geolocation

[88]

How it works
The W3C Geolocation API specification merely defines an interface by which we can
obtain data. Where and how geolocation data arrives is rather an implementation
detail. On most mobile devices, GPS is usually built in and is gathered through a
combination of satellite data, WiFi, and GSM/CDMA cell tower location. On desktop
devices, Wi-Fi and geolocation based on IP address can be used. Lastly, Google offers
a geolocation service fueled by its StreetView data. Needless to say, what goes on
under the hood need not worry us, but it is good to understand how the magic
really happens.

The following are the supported browsers:

•	 Firefox 3.5+
•	 Chrome 5.0+
•	 Safari 5.0+
•	 Opera 10.60+
•	 Internet Explorer 9.0+

Support is rendered on the following mobile devices:

•	 Android 2.0+
•	 iPhone 3.0+
•	 Opera Mobile 10.1+
•	 Blackberry OS 6

The API
The geolocation API is fairly simple providing only two methods:
getCurrentPosition() and watchPosition(). Available under the navigator.
geolocation namespace, these methods are very similar but provide data about the
device's location in distinct ways. While getCurrentPosition is a one-time call to
get geolocation data, watchPosition returns geolocation data and continues to
re-invoke its callback when the device's position changes until the clearWatch
method is invoked.

Both methods take the same three arguments: a successCallback function, an
errorCallback function, and a PositionOptions function consisting of the
following attributes:

•	 boolean enableHighAccuracy: This indicates that the most accurate data
should be retrieved, which may result in slower response times.

www.ebookee.org

http://www.ebookee.org/

Chapter 4

[89]

•	 long timeout: This indicates the maximum number of milliseconds before
the request should time out.

•	 long maximumAge: This indicates that cached content that does not exceed
the specified age in milliseconds should be returned. If set to 0, the new
position data will always be returned.

Both methods also return a Position object to the successCallback function, which
consists of the following properties:

•	 coords.latitude: This holds the latitude in decimal degrees
•	 coords.longitude: This holds the longitude in decimal degrees
•	 coords.altitude: This holds the height in meters relative to the reference

ellipsoid
•	 coords.accuracy: This holds the accuracy of the latitude and longitude in

meters
•	 coords.altitudeAccuracy: This holds the accuracy of the altitude in meters
•	 coords.heading: This holds the travel direction of the device in degrees

clockwise relative to true north
•	 coords.speed: This holds the current ground speed in meters per second
•	 timestamp: This holds the date and time of when the position was acquired

Finally, the errorCallback argument receives a PositionError object when
invoked, which includes the following properties:

•	 code: This indicates the error type. This can be any of the following values:
PERMISSION_DENIED (1), POSITION_UNAVAILABLE (2), and TIMEOUT (3).

•	 message: This shows the details of the error.

A simple request
Now that we understand the mechanics of the geolocation API, let us go over dissent
an actual request. Take a look at the following code snippet:

if (navigator.geolocation) {
 navigator.geolocation.getCurrentPosition(successCallback);
}

www.ebookee.org

http://www.ebookee.org/

The App: Getting Movies Via Geolocation

[90]

This is the most basic call we can make. First of all, since geolocation is not
supported on all devices, we must take care to avoid unexpected errors by checking
whether it is supported, which is where the if statement comes in. Secondly, we
invoke the getCurrentPosition method passing in a successCallback function.
successCallback can be any function we want to invoke when the position is
returned. Notice the missing errorCallback function and options arguments. These
are strictly optional although it is good practice to implement them to account for
unexpected error conditions.

Movies near you
To begin adding geolocation to our MovieNow enterprise application, we will first
make some adjustments to our page, which we set up in Chapter 3, The App: Structure
and Semantics. In the article tag, we will add a button tag and a div tag:

<article>
 <h1>Home Title</h1>
 <p>Home content</p>
 <button id="find-movies">Find Movies</button>
 <div id="movies-near-me">
 </div>
</article>

The button tag will be used to invoke the action to get movie data while the div
tag is where the data will land. If all goes well, your screen should display a button
labeled Find Movies, as shown in the following screenshot:

www.ebookee.org

http://www.ebookee.org/

Chapter 4

[91]

Next, you may recall some JavaScript references that were included at the bottom
of index.html. Let us add three more JavaScript references. See the following
code snippet:

 <footer>Copyright © 2012 MovieNow. All rights reserved.
</footer>
 <script src="js/ios-orientationchange-fix.js"></script>
 <script src="js/jquery-1.8.0.min.js"></script>
 <script src="js/jquery.xdomainajax.js"></script>
 <script src="js/movienow.js"></script>
 <script src="js/movienow.geolocation.js"></script>
</body>

You may have noticed the inclusion of jquery.xdomainajax.js. This is an
extension to the jQuery library that allows for cross-domain AJAX GET requests.
Going back to Netscape Navigator 2.0, browsers have implemented the same origin
policy, which is a security precaution that restricts pages on one site from being
able to access properties and methods of pages on another site. This made sense
at the time, but now with an increasingly fluid World Wide Web, where content
from many sites can be "mashed up" into a unified experience, the borders have by
necessity been circumvented. There are many workarounds including JavaScript
Object Notation with Padding (JSONP), that allows cross-domain AJAX requests
passing a callback parameter, so the service called can wrap the resulting JSON
object in the function passed as a callback.

The cross-domain-ajax library can be found at https://
github.com/padolsey/jQuery-Plugins/tree/master/
cross-domain-ajax/. All credit goes to James Padolsey for
this library.

Next, we will add the cross-domain-ajax library to the js folder, and then create
two new files in the js folder: movienow.js and movienow.geolocation.js. In
movienow.js, we will establish our root namespace movienow. This will be in the
global or window scope meaning that it can be accessed anywhere. This is where we
can add core functionality to our enterprise application as we see fit. For starters, the
only line we need here is the following, which sets the root namespace:

var movienow = {};

www.ebookee.org

http://www.ebookee.org/

The App: Getting Movies Via Geolocation

[92]

In movienow.geolocation.js, we will add our geolocation-specific functionality.
The reason we do this is to make sure we are following a modular approach in our
enterprise application development. Modularity forces us to break up functionality
into discrete, highly cohesive, loosely coupled pieces. Modularity allows us to
vary parts of our enterprise application without affecting the whole. It is akin to
the difference between a mobile phone with a removable battery and one where
the battery is welded in. If the battery goes bad, modularity means the difference
between replacing a broken part to replacing an entire device.

Self-invoking
We will begin by getting a reference to our established namespace. This is good
defensive practice in case anything happens to your core namespace JavaScript file.

var movienow = movienow || {};

Notice that having this declaration is not necessary to include the
movienow.js file with the initial definition of our namespace.

Next, we will establish our geolocation namespace:

movienow.geolocation = (function(){})();

Notice the second set of parentheses. This construct is known as an immediately
invoked function expression (IIFE). This is a nifty shorthand for registering and
immediately invoking JavaScript code in a modular way. All the properties and
methods for geolocation will be wrapped in the movienow.geolocation namespace,
which makes for a smaller footprint in the global namespace and cleaner, more
modular code.

That becomes this
Within our newly established namespace declaration, we will do a couple of things.
First, we need to capture a reference to the object itself. We will do this by adding the
following line:

var that = this;

This may seem like an amusing line, but its importance will become clear. The this
keyword in JavaScript is a handy function for referring to the owner of the executing
function or to the object of which the function is a method. Without it, we would be
required to prefix all of our properties and methods within our namespace with the
namespace itself, which gets thorny when you want to change your namespace.

www.ebookee.org

http://www.ebookee.org/

Chapter 4

[93]

The following illustrates the value of the this keyword:

var myNamespace = {
 firstFunction: function() {
 document.write('firstFunction invoked.');
 myNamespace.secondFunction();
 },
 secondFunction: function() {
 document.write('secondFunction invoked.');
 }
};
myNamespace.firstFunction();

Notice the use of myNamespace to refer to other methods within the object. We
can replace it with this in order to have a more agnostic way of referring to other
members within the object:

var myNamespace = {
 firstFunction: function() {
 document.write('firstFunction invoked.');
 this.secondFunction();
 },
 secondFunction: function() {
 document.write('secondFunction invoked.');
 }
};
myNamespace.firstFunction();

Unfortunately, when the context changes, so does this. When we add a function
inside another function, the context will be that of the outer function:

var myNamespace = {
 firstFunction: function() {
 document.write('firstFunction invoked.');
 var innerFunction = (function() {
 this.secondFunction();
 })();
 },
 secondFunction: function() {
 document.write('secondFunction invoked.');
 }
};
myNamespace.firstFunction();

www.ebookee.org

http://www.ebookee.org/

The App: Getting Movies Via Geolocation

[94]

Here we have added innerFunction that invokes secondFunction (notice the
immediately invoked function expression). However, secondFunction is never
invoked. This is because the context for this has changed to that of firstFunction.
To maintain our reference to the myNamespace context, we simply declare a variable
and hold onto it:

var myNamespace = {
 firstFunction: function() {
 document.write('firstFunction invoked.');
 var that = this;
 var innerFunction = (function() {
 that.secondFunction();
 })();
 },
 secondFunction: function() {
 document.write('secondFunction invoked.');
 }
};
myNamespace.firstFunction();

And this is where that becomes this.

Getting location
Until now the Find Movies button we placed on the page was non-functional.
Click on it and nothing happens. We will add an event handler for that button so
that something does happen when you click on it. Add the following inside the
movienow.geolocation object:

jQuery(document).ready(function(){
 jQuery('#find-movies').click(function(){
 alert('Button clicked!');
 });
});

The movienow.geolocation.js file should now look like the following code:

var movienow = movienow || {};
movienow.geolocation = (function(){
 var that = this;
 jQuery(document).ready(function(){
 jQuery('#find-movies').click(function(){alert('Button
clicked!');});
 });
})();

www.ebookee.org

http://www.ebookee.org/

Chapter 4

[95]

Now click on Find Movie. You should get the following alert box:

That may be all well and good, but our goals are much loftier. We want to get
some location data. We do this by adding a couple of methods: getLocation and
locationCallback:

this.getLocation = function(){
 if (navigator.geolocation) {
 navigator.geolocation.getCurrentPosition(this.locationCallback);
 }
};
this.locationCallback = function(loc){
 jQuery('#movies-near-me').html('Lat:' + loc.coords.latitude + ',
Long: ' + loc.coords.longitude);
};

The first function is of course where we invoke the getCurrentPosition method
already discussed. The second function is successCallback. We can now remove
the alert in the event handler for the Find Movies button and replace it with
the following:

that.getLocation();

The movienow.geolocation.js file should now look like the following code:

var movienow = movienow || {};
movienow.geolocation = (function(){
 var that = this;
 jQuery(document).ready(function(){
 jQuery('#find-movies').click(function(){that.getLocation();});
 });
 this.getLocation = function(){
 if (navigator.geolocation) {

www.ebookee.org

http://www.ebookee.org/

The App: Getting Movies Via Geolocation

[96]

 navigator.geolocation.getCurrentPosition
(this.locationCallback);
 }
 };
 this.locationCallback = function(loc){
 jQuery('#movies-near-me').html('Lat:' + loc.coords.latitude + ',
Long: ' + loc.coords.longitude);
 };
})();

Now when you click on the Find Movies button, a request is made through the
geolocation API for location data.

The web browser will typically prompt you for permission to track your physical
location. The following screenshot shows examples for Safari, Chrome, and
Firefox respectively.

www.ebookee.org

http://www.ebookee.org/

Chapter 4

[97]

This will happen only once. When you click on Allow, the browser will save this
setting for the specified domain.

You should now see latitude and longitude displayed on the page. Congratulations!
Your enterprise application is now aware of where you are.

Getting postal codes
Now that we have geographic coordinates, the next step is to map them to postal
codes. Once we have postal codes, we can get movie listings. In order to get postal
codes, we will need to make an AJAX request to a web service, sending the latitude
and longitude and in turn receiving postal codes. There are a number of web services
that provide this data. For our MovieNow enterprise application, we will employ a
service from geonames.org.

The GeoNames geographical database covers all countries
and contains over eight million placenames that are
available for download free of charge. It is licensed under
Creative Commons Attribution 3.0.

www.ebookee.org

http://www.ebookee.org/

The App: Getting Movies Via Geolocation

[98]

Geonames.org provides a convenient web service called
findNearbyPostalCodesJSON for obtaining postal code data.
This service takes the following parameters:

•	 lat: This specifies the latitude in decimal degrees
•	 lng: This specifies the longitude in decimal degrees
•	 radius: This specifies the radius in kilometers
•	 maxRows: This specifies the maximum number of rows to return
•	 style: This specifies the verbosity of the response (SHORT, MEDIUM,

LONG, FULL)
•	 country: This specifies the country to look in
•	 localCountry: This parameter, when set to true, returns only codes within

the country
•	 username: The account for which you are accessing the data

The following is an example service call:

http://api.geonames.org/findNearbyPostalCodesJSON?lat=45&lng=-
66.7&username=demo

It returns the following JSON output:

{
 "postalCodes": [
 {
 "distance": "10.13582",
 "adminCode1": "NB",
 "postalCode": "E5H",
 "countryCode": "CA",
 "lng": -66.769962,
 "placeName": "Pennfield",
 "lat": 45.076588,
 "adminName1": "New Brunswick"
 }
]
}

You can copy/paste this URL into a web browser and see for yourself.

The web services are throttled meaning that only a certain number
of requests per day are serviced for a given username. That is why
you should register your own account with geonames.org before
proceeding. Once you do so, swap in demo with your username.

www.ebookee.org

http://www.ebookee.org/

Chapter 4

[99]

Now that we have the ability to map coordinates to postal codes, we will need to
make an AJAX request to make the call and retrieve the data. We will be using
jQuery to assist us in making the request.

AJAX ain't just a cleaning product
Standing for Asynchronous JavaScript and XML, AJAX is a technique whereby the
XMLHttpRequest object is used to make a call to the server for additional content,
save state, poll for resources, and so on. It is a useful way of extending your page
with additional functionality without a page refresh.

The jQuery library (http://jquery.com) makes it fairly easy and straightforward
to make AJAX requests in a cross-browser compatible way. Take a look at the
following code:

jQuery.ajax({
 url: 'http://some-domain.com/some-web-service',
 data: 'q=something'
 success: function(payload){
 alert(payload);
 },
 error: function(error){
 alert(error.responseText);
 }
});

You simply need to set the URL and arguments. You can define a success event
handler and an error event handler. The success handler will be invoked when the
AJAX request successfully completes passing the payload as an argument. The error
handler will be invoked when the AJAX request returns anything other than a 200
status code.

Add the following code snippet to your movienow.geolocation object:

this.reverseGeocode = function(loc){
 jQuery.ajax({
 url: 'http://api.geonames.org/findNearbyPostalCodesJSON',
 data: 'lat=' + loc.coords.latitude + '&lng=' + loc.coords.
longitude + '&username=demo', //Swap in with your geonames.org
username
 success: function(payload){
 var data = that.objectifyJSON(payload);
 var postalCodes = [];
 for (var i=0; i<data.postalCodes.length; ++i) {
 postalCodes.push(data.postalCodes[i].postalCode);
 }

www.ebookee.org

http://www.ebookee.org/

The App: Getting Movies Via Geolocation

[100]

 jQuery('#movies-near-me').html(postalCodes.join(','));
 }
 });
};
this.objectifyJSON = function(json) {
 if (typeof(json) == "object") {
 return json;
 }
 else {
 return jQuery.parseJSON(json);
 }
};

We are showing our errors using an alert popup, but for
a final application we should define a CSS styled DOM to
show notifications and errors.

Replace the contents of locationCallback with the following:

that.reverseGeocode(loc);

Upon invocation of the successCallback function, we are going to take the Positon
object and pass it along to our reverseGeocode method, which makes an AJAX
request to the geonames.org web service to retrieve the postal codes for the location
of the device. In the success handler for the AJAX request, we extract the postal
codes from the JSON object and put them into an array. We then display the array on
the page. Note the objectifyJSON method. We do this because some browsers will
automatically marshal the payload data into an object while others treat it as a string.

The movienow.geolocation.js file should now look like the following code:

var movienow = movienow || {};
movienow.geolocation = (function(){
 var that = this;
 jQuery(document).ready(function(){
 jQuery('#find-movies').click(function(){that.getLocation();});
 });
 this.getLocation = function(){
 if (navigator.geolocation) {
 navigator.geolocation.getCurrentPosition(this.
locationCallback);
 }
 };
 this.locationCallback = function(loc){
 that.reverseGeocode(loc);
 };

www.ebookee.org

http://www.ebookee.org/

Chapter 4

[101]

 this.reverseGeocode = function(loc){
 jQuery.ajax({
 url: 'http://api.geonames.org/findNearbyPostalCodesJSON',
 data: 'lat=' + loc.coords.latitude + '&lng=' + loc.
coords.longitude + '&username=demo', //Swap in with your geonames.org
username
 success: function(payload){
 var data = that.objectifyJSON(payload);
 var postalCodes = [];
 for (var i=0; i<data.postalCodes.length; ++i) {
 postalCodes.push(data.postalCodes[i].postalCode);
 }
 jQuery('#movies-near-me').html(postalCodes.join(','));
 },
 error: function(error){
 alert(error.responseText);
 }
 });
 };
 this.objectifyJSON = function(json) {
 if (typeof(json) == "object") {
 return json;
 }
 else {
 return jQuery.parseJSON(json);
 }
 };
})();

When you click on Find Movies, you should see the following as shown in
the screenshot:

www.ebookee.org

http://www.ebookee.org/

The App: Getting Movies Via Geolocation

[102]

From postal codes to showtimes
Now that we have postal codes, we can map those to movie showtimes. Unfortunately,
there is no free web service from which we can get this kind of data. All is not lost
however. Moviefone.com does offer feeds based on postal codes. One wrinkle
however is that we cannot easily get feed data via JavaScript because of cross-domain
limitations. The cross-domain Ajax library only works for services that return JSON.
To work around this, we can create a proxy.

Create a file called movielistings.php. Add the following to your newly
created file:

<?php
 $zips = $_GET['zip'];
 $zips = explode(',', $zips);
 $listings = array();
 for ($i=0; $i<count($zips); $i++) {
 $listings[$i] = file_get_contents('http://gateway.moviefone.
com/movies/pox/closesttheaters.xml?zip=' . $zips[$i]);
 $listings[$i] = simplexml_load_string($listings[$i]);
 }
 echo json_encode($listings);
?>

This is a simple PHP file that makes requests to Moviefone.com's closest theaters
feed based on a string of postal codes passed in the query string, and converts the
output into JSON. To run this, you will need to make sure you have PHP installed
on your machine. Otherwise, we could easily write something similar using JSP,
ASP.NET, or Node.js for example.

Once we have our movie listings proxy service, we can add the following to
movienow.geolocation:

this.getShowtimes = function(postalCodes) {
 jQuery.ajax({
 url: 'movielistings.php',
 data: 'zip=' + postalCodes.join(','),
 success: function(payload){
 var data = that.objectifyJSON(payload);
 that.displayShowtimes(that.constructMoviesArray(data));
 },
 error: function(error){
 alert(error.responseText);
 }
 });
};

www.ebookee.org

http://www.ebookee.org/

Chapter 4

[103]

this.constructMoviesArray = function(data) {
 var key, movie, theater = null;
 var movies = {};
 movies.items = {};
 movies.length = 0;
 for (var j=0; j<data.length; ++j) {
 if (data[j].movie) {
 theater = data[j].theater;
 for (var i=0; i<data[j].movie.length; ++i) {
 movie = data[j].movie[i];
 key = movie.movieId + '|'+ theater.theaterId;
 if (!movies.items[key]) {
 movie.theater = theater;
 movies.items[key] = movie;
 movies.length++;
 }
 }
 }
 }
 return movies;
};
this.displayShowtimes = function(movies) {
 var movie = null;
 var html = '';
 for (var item in movies.items) {
 movie = movies.items[item];
 html += '<p>' + movie.title + '
' +
movie.showtime.join(',') + '</p>';
 }
 jQuery('#movies-near-me').html(html);
};

Once done, replace the line in the reverseGeocode method where we are populating
#movies-near-me with the following line of code:

that.getShowtimes(postalCodes);

We have thus added three more methods: getShowtimes, constructMoviesArray,
and displayShowtimes. The getShowtimes method makes an AJAX
request to the movie listings proxy, grabs the JSON data returned and calls
constructMoviesArray to extract the relevant data and remove duplicates,
and then calls displayShowtimes to display the data.

www.ebookee.org

http://www.ebookee.org/

The App: Getting Movies Via Geolocation

[104]

The final movienow.geolocation.js file should now look like the following code:

var movienow = movienow || {};
movienow.geolocation = (function(){
 var that = this;
 jQuery(document).ready(function(){
 jQuery('#find-movies').click(function(){that.getLocation();});
 });
 this.getLocation = function(){
 if (navigator.geolocation) {
 navigator.geolocation.getCurrentPosition(this.
locationCallback);
 }
 };
 this.locationCallback = function(loc){
 that.reverseGeocode(loc);
 };
 this.reverseGeocode = function(loc){
 jQuery.ajax({
 url: 'http://api.geonames.org/findNearbyPostalCodesJSON',
 data: 'lat=' + loc.coords.latitude + '&lng=' + loc.coords.
longitude + '&username=demo',
 success: function(payload){
 var data = that.objectifyJSON(payload);
 var postalCodes = [];
 for (var i=0; i<data.postalCodes.length; ++i) {
 postalCodes.push(data.postalCodes[i].postalCode);
 }
 that.getShowtimes(postalCodes);
 },
 error: function(error){
 alert(error.responseText);
 }
 });
 };
 this.objectifyJSON = function(json) {
 if (typeof(json) == "object") {
 return json;
 }
 else {
 return jQuery.parseJSON(json);
 }
 };
 this.getShowtimes = function(postalCodes) {
 jQuery.ajax({

www.ebookee.org

http://www.ebookee.org/

Chapter 4

[105]

 url: 'movielistings.php',
 data: 'zip=' + postalCodes.join(','),
 success: function(payload){
 var data = that.objectifyJSON(payload);
 that.displayShowtimes(that.
constructMoviesArray(data));
 }
 });
 };
 this.constructMoviesArray = function(data) {
 var key, movie, theater = null;
 var movies = {};
 movies.items = {};
 movies.length = 0;
 for (var j=0; j<data.length; ++j) {
 if (data[j].movie) {
 theater = data[j].theater;
 for (var i=0; i<data[j].movie.length; ++i) {
 movie = data[j].movie[i];
 key = movie.movieId + '|'+ theater.theaterId;
 if (!movies.items[key]) {
 movie.theater = theater;
 movies.items[key] = movie;
 movies.length++;
 }
 }
 }
 }
 return movies;
 };
 this.displayShowtimes = function(movies) {
 var movie = null;
 var html = '';
 for (var item in movies.items) {
 movie = movies.items[item];
 html += '<p>' + movie.title + '
' +
movie.showtime.join(',') + '</p>';
 }
 jQuery('#movies-near-me').html(html);
 };
})();

www.ebookee.org

http://www.ebookee.org/

The App: Getting Movies Via Geolocation

[106]

When you click on the Find Movies button, you should see the following screenshot:

Of course, we have much more data to show, but we will get to that in later chapters.

Summary
In this chapter, we walked through how the geolocation API works and how to use
it. We added a button to our enterprise application and wired it to make a request
to the geolocation API. We used the coordinates from the Position object returned
to make an AJAX request to a web service to get postal codes for those coordinates.
Using the postal codes, we made a request to a feed to get movie showtimes data and
we displayed that data on the page.

In the next chapter, we will go over displaying the wealth of data we made available
to ourselves in this chapter. We will cover CSS in more depth and talk about what's
new in CSS3. We will even build some nifty CSS3 effects to make our enterprise
application look interesting and inviting.

www.ebookee.org

http://www.ebookee.org/

The App: Displaying Movie
Data via CSS3

We already added some styles to our enterprise application using CSS in Chapter
3, The App: Structure and Semantics, but we have not introduced the properties that
make CSS3 a game changer. In this chapter, we will run through some useful CSS3
properties and practical implementations for our application explaining the scope
of them in any web application.

Each example will feature support (and fallback when it is needed) for the most
popular web browsers in the market.

The main topics covered in this chapter are as follows:

•	 Back to the browsers' babel tower
•	 CSS Magic: Adding more styles to MovieNow (rounded corners, color,

gradients, box shadows, text shadows)
•	 Movies and styles (transitions and animations)
•	 Choosing between transitions and animations
•	 Using media queries
•	 Applying CSS3 selectors

Back to the browsers' babel tower
Whenever you start using a new CSS property, it is necessary to check the list of
browsers that support it. If it is supported, you need to verify how to implement it
and if it requires a prefix or a special form such as filter in Internet Explorer.

www.ebookee.org

http://www.ebookee.org/

The App: Displaying Movie Data via CSS3

[108]

The following are the most common prefixes for CSS properties:

•	 -moz- Firefox
•	 -webkit- Safari, Safari iOS, and Chrome
•	 -o- Opera
•	 -ms- Internet Explorer

Workarounds when you do not have support of any property include use of images
and removal of some visuals (following graceful degradation and trying to avoid the
removal of features).

We could use a JavaScript library such as Lea Verou's -prefix-free
(http://leaverou.github.com/prefixfree/) to avoid the
use of multiple vendor prefixes, but this can affect our application's
performance. As a general rule CSS is almost always faster
(execution time) than JavaScript, so performance-wise a couple of
lines more in our stylesheet is worth the effort.

As we saw in Chapter 3, The App: Structure and Semantics, it is possible to add
conditional CSS imports. This technique only works for Internet Explorer and you
can compare versions using the following syntax:

•	 lt (less than)
•	 lte (less than or equal to)
•	 gt (greater than)
•	 gte (greater than or equal to)

For example, if you want to add a specific CSS file for Internet Explorer 7 and
previous versions, you can use the following declaration:

<!--[if lte IE 7]>
 <link rel="stylesheet" href="css/ie7.css" type="text/css" />
<![endif]-->

It is good practice to include Internet Explorer specific hacks and fallbacks in a
separate stylesheet in order to achieve clear coding and avoid extra loading time
in other browsers.

To add support for common CSS3 features such as
border-radius and box-shadow, you can include CSS3 Pie
(http://css3pie.com), a JavaScript library that adds
support to these features for Internet Explorer 6 to 9.

www.ebookee.org

http://www.ebookee.org/

Chapter 5

[109]

CSS3 Magic – adding more styles to
MovieNow
Let us continue with our movie application development. As a general rule, you
should plan in advance or, in other words, have a visual design before beginning to
mess around with styles. A benefit of following this rule (and preferably having a
style guide as well) is that your application will reflect a unified visual identity. Let
us start styling some elements that we already know in our enterprise application.

We removed our Find Movies button to make an automatic call later.

Adding rounded corners
If you had to create rounded corners with CSS1 and CSS2, you should know how
complicated the possible solutions for rounded corners were. Generally, they
involve images or heavy processing JavaScript affecting the performance of your
enterprise application.

In CSS3, we have the border-radius property that allows us to specify rounded
shapes for the four borders of the element.

The syntax of this property is as follows:

border-radius:top-left-radius top-right-radius bottom-right-radius
top-left-radius;

You can specify %, em, and px as units for each corner.

Supposing that we need to add rounded borders to the bottom of our Top 5 Box
Office section. We can use the border-radius property (and its equivalents with
prefixes for each browser) using 0 for top left and right, and 8px for bottom
left and right.

aside{
 float:right;
 width:200px;
 padding:30px 0 10px 0;
 margin:0 10px;
 background-color:#E4E4E4;
 /** TOP 5 ROUNDED BORDER **/
 border-radius:0 0 8px 8px;
 -moz-border-radius:0 0 8px 8px;
 -webkit-border-radius:0 0 8px 8px;
 -o-border-radius:0 0 8px 8px;
}

www.ebookee.org

http://www.ebookee.org/

The App: Displaying Movie Data via CSS3

[110]

Applying this, we can see the difference between the original Box Office (left) and
the border-radius one (right).

Notice that if we use shorthand border-radius:0 8px, it adds
round borders for top-right and bottom-left corners only.

This property is shorthand for border-top-left-radius, border-top-right-
radius, border-bottom-left-radius, and border-bottom-right-radius
properties.

Sadly, in the case of Internet Explorer, the property is supported only since IE9.

As an alternative, you can use CSS3 Pie (http://css3pie.com) or
Curved Corner (http://code.google.com/p/curved-corner/)
to give support for previous versions of Internet Explorer.

Setting color
There are multiple ways to describe colors inside our stylesheets; the most common
one is the hexadecimal #rrggbb where the first pair represents the numeric value of
red, the second pair represents green, and the last one blue. Additionally, we can use
a shorthand notation #rgb that will convert our value to #rrggbb, for example, if we
use #123 that will be recognized as #112233.

Let us go over other ways to describe colors:

www.ebookee.org

http://www.ebookee.org/

Chapter 5

[111]

Red, green, and blue
You can define a color using the syntax rgb(R,G,B) where R, G, and B indicate the
intensity of the colors red, green, and blue and can be:

•	 An integer from 0 (no color) to 255 (max intensity)
•	 A float 0.0% (no color) to 100.0% (max intensity)

You must use the same units inside the declaration. It is supported in all modern
browsers. Here is a class title with red fonts:

.title{
 color:rgb(255,0,0);
}

Red, green, blue, and alpha
An extended specification of rgb that adds a value at the end for alpha transparency
uses values from 0.0 (invisible) to 1.0 (completely visible). It is supported in all
modern browsers and Internet Explorer since Version 9. We can define a red color for
fonts in our class title with 50 percent of alpha transparency:

.title{
 color:rgba(255,0,0, .5);
}

Hue, saturation, and lightness
HSL is a cylindrical-coordinate representation of colors. vHue is a floating point
representation of an angle; this value defines the color on which saturation
and lightness will be applied and its values range from 0 to 360. Saturation is a
percentage that goes from 0 (white) to 100% (full color) and defines the colorfulness.
Finally, lightness defines the amount of light and goes from 0% (no light, total black)
to 100% (full color). The syntax is hsl(H,S,L). It is supported in all modern browsers
and Internet Explorer since Version 9. If we want to apply red fonts in our class
title, we can do the following:

.title{
 color:hsl(0,100%,100%);
}

www.ebookee.org

http://www.ebookee.org/

The App: Displaying Movie Data via CSS3

[112]

Hue, saturation, lightness, and alpha
This is an extended specification of hsl that adds a value at the end for alpha
transparency in the same way rgba does for rgb. It is supported in all modern
browsers and Internet Explorer since Version 9. We can define a red color for fonts
in our class title with 50 percent of alpha transparency as follows:

.title{
 color:hsla(0,100%,100%, .5);
}

You can use a conditional CSS import for older versions of Internet Explorer and
apply opacity and an alpha filter to get the same effect:

.title{
 color:#f00;
 opacity: 0.5;
 filter: alpha(opacity=50);
}

Adding gradients
New applications in the market have adopted a plain design not because of technical
restrictions but for the sake of simplicity. Even though it is sometimes necessary to
add some styling to simulate depth, gradients make the process much easier.

CSS3 introduces linear-gradient and radial-gradient to background values.
You can apply gradients to background or background-image properties.

A possible syntax for this is as follows:

background-image:linear-gradient(angle, color position, color
position);

You can add as many color position pairs as you want. Although it is possible to
use hexadecimal colors, in this example we are going to use rgb.

First, we add a gradient that goes from top to bottom to our navigation bar. It starts
with light grey and ends with light grey, so we only need two points: 0% and 100%.
The initial color will be rgb(102,102,102) and the final one will be rgb(70,70,70).
Adding this to nav with pertinent prefixes we have:

nav{
 background-color:#666;
 background-image:linear-gradient(top, rgb(102,102,102) 0%,
rgb(70,70,70) 100%);

www.ebookee.org

http://www.ebookee.org/

Chapter 5

[113]

 background-image:-moz-linear-gradient(top, rgb(102,102,102) 0%,
rgb(70,70,70) 100%);
 background-image:-webkit-linear-gradient(top, rgb(102,102,102) 0%,
rgb(70,70,70) 100%);
 background-image:-o-linear-gradient(top, rgb(102,102,102) 0%,
rgb(70,70,70) 100%);
 background-image:-ms-linear-gradient(top, rgb(102,102,102) 0%,
rgb(70,70,70) 100%);
}

As a result we can see the right image compared with the original one at the left:

If you do not want to deal with every vendor prefix, an option
is to use a generator such as Colorzilla Gradient Generator
(http://www.colorzilla.com/gradient-editor/).
You only need to define your gradient with a visual tool and
then copy the code generated into your CSS.

To show that we can add multiple points, let us apply a more complex effect to our
Top 5 Box Office area. In this case, we apply the effect from bottom to top:

aside{
 float:right;
 width:200px;
 padding:30px 0 10px 0;
 margin:0 10px;
 background-color:#E4E4E4;
 /** TOP 5 ROUNDED BORDER **/
 border-radius:0 0 8px 8px;
 -moz-border-radius:0 0 8px 8px;
 -webkit-border-radius:0 0 8px 8px;
 -o-border-radius:0 0 8px 8px;
 /** BOX OFFICE GRADIENT **/
 background:linear-gradient(bottom, rgb(200,200,200) 35%,
rgb(210,210,210) 68%, rgb(220,220,220) 98%, rgb(80,80,80) 100%);
 background:-o-linear-gradient(bottom, rgb(200,200,200) 35%,
rgb(210,210,210) 68%, rgb(220,220,220) 98%, rgb(80,80,80) 100%);
 background:-moz-linear-gradient(bottom, rgb(200,200,200) 35%,
rgb(210,210,210) 68%, rgb(220,220,220) 98%, rgb(80,80,80) 100%);
 background:-webkit-linear-gradient(bottom, rgb(200,200,200) 35%,
rgb(210,210,210) 68%, rgb(220,220,220) 98%, rgb(80,80,80) 100%);
 background:-ms-linear-gradient(bottom, rgb(200,200,200) 35%,
rgb(210,210,210) 68%, rgb(220,220,220) 98%, rgb(80,80,80) 100%);
}

www.ebookee.org

http://www.ebookee.org/

The App: Displaying Movie Data via CSS3

[114]

As in our previous example, we use percentages to define positions. In this case, we
use 35%, 68%, and 98%.

Finally, we can compare the original area (left) with the final one (right), as shown in
the following screenshot:

We can apply the same principles to our header:

header{
 color:#fff;
 height:122px;
 /** HEADER GRADIENT **/
 background-color:#1A1A1A;
 background-image:url(../img/logo_back.png), linear-gradient(right,
rgb(26,26,26) 35%, rgb(40,40,40) 68%, rgb(61,61,61) 85%);
 background-image:url(../img/logo_back.png), -moz-linear-
gradient(right, rgb(26,26,26) 35%, rgb(40,40,40) 68%, rgb(61,61,61)
85%);
 background-image:url(../img/logo_back.png), -webkit-linear-
gradient(right, rgb(26,26,26) 35%, rgb(40,40,40) 68%, rgb(61,61,61)
85%);
 background-image:url(../img/logo_back.png), -o-linear-
gradient(right, rgb(26,26,26) 35%, rgb(40,40,40) 68%, rgb(61,61,61)
85%);
 background-image:url(../img/logo_back.png), -ms-linear-
gradient(right, rgb(26,26,26) 35%, rgb(40,40,40) 68%, rgb(61,61,61)
85%);
}

www.ebookee.org

http://www.ebookee.org/

Chapter 5

[115]

We get a more interesting header (bottom) compared to the original one (top):

The prefix -ms- for gradients in Internet Explorer was
deprecated by Microsoft. Refer to the following link:
http://msdn.microsoft.com/en-us/library/
windows/apps/hh453527.aspx.

It is always possible to fallback gradients using images in tile and the
background-image property.

Adding box shadows
We can use shadows to simulate depth giving the effect of inset and outset visuals.
The property box-shadow allows us to create shadows based on the borders of
the element.

The syntax for box-shadow is as follows:

box-shadow:horizontal-shadow vertical-shadow blur spread color inset;

Only horizontal-shadow and vertical-shadow are required. inset specifies if the
shadow is applied inside the element.

Let us add a bottom drop shadow to our nav. We can specify 0 for horizontal-
shadow, 1px for vertical-shadow to show our shadow below the element, 3px to
give some blur, and color as #999:

nav{
 background-color:#666;
 background-image:linear-gradient(top, rgb(102,102,102) 0%,
rgb(70,70,70) 100%);

www.ebookee.org

http://www.ebookee.org/

The App: Displaying Movie Data via CSS3

[116]

 background-image:-moz-linear-gradient(top, rgb(102,102,102) 0%,
rgb(70,70,70) 100%);
 background-image:-webkit-linear-gradient(top, rgb(102,102,102) 0%,
rgb(70,70,70) 100%);
 background-image:-o-linear-gradient(top, rgb(102,102,102) 0%,
rgb(70,70,70) 100%);
 background-image:-ms-linear-gradient(top, rgb(102,102,102) 0%,
rgb(70,70,70) 100%);
 /** NAVIGATION SHADOW **/
 box-shadow: 0 1px 3px #999;
 -moz-box-shadow: 0 1px 3px #999;
 -webkit-box-shadow: 0 1px 3px #999;
 -o-box-shadow: 0 1px 3px #999;
}

We can compare the nav menu without the shadow (left) and with the
shadow (right):

To demonstrate inset, we can add an inner shadow to our Top 5 Box Office area.
Here we apply negative positioning, -1px, for vertical-shadow to show a part of
the shadow in the bottom, 1px for blur, 1px for spread (as we want to modify the
size of our shadow), color #aaa, and finally inset to have an inner shadow:

aside{
 float:right;
 width:200px;
 padding:30px 0 10px 0;
 margin:0 10px;
 background-color:#E4E4E4;
 /** TOP 5 ROUNDED BORDER **/
 border-radius:0 0 8px 8px;
 -moz-border-radius:0 0 8px 8px;
 -webkit-border-radius:0 0 8px 8px;
 -o-border-radius:0 0 8px 8px;
 /** BOX OFFICE GRADIENT **/
 background:linear-gradient(bottom, rgb(200,200,200) 35%,
rgb(210,210,210) 68%, rgb(220,220,220) 98%, rgb(80,80,80) 100%);
 background:-o-linear-gradient(bottom, rgb(200,200,200) 35%,
rgb(210,210,210) 68%, rgb(220,220,220) 98%, rgb(80,80,80) 100%);
 background:-moz-linear-gradient(bottom, rgb(200,200,200) 35%,
rgb(210,210,210) 68%, rgb(220,220,220) 98%, rgb(80,80,80) 100%);

www.ebookee.org

http://www.ebookee.org/

Chapter 5

[117]

 background:-webkit-linear-gradient(bottom, rgb(200,200,200) 35%,
rgb(210,210,210) 68%, rgb(220,220,220) 98%, rgb(80,80,80) 100%);
 background:-ms-linear-gradient(bottom, rgb(200,200,200) 35%,
rgb(210,210,210) 68%, rgb(220,220,220) 98%, rgb(80,80,80) 100%);
 /** BOX OFFICE INNER SHADOW **/
 box-shadow:0 -1px 1px 1px #aaa inset;
 -moz-box-shadow:0 -1px 1px 1px #aaa inset;
 -webkit-box-shadow:0 -1px 1px 1px #aaa inset;
 -o-box-shadow:0 -1px 1px 1px #aaa inset;
}

As a result, our Top 5 Box Office area looks deeper than before:

We can apply this to our wrapper to have shadows on the left and right borders:

.wrapper{
 background-color:#fff;
 /** PAGE SIDES SHADOWS **/
 box-shadow: 1px 0 2px 1px #aaa;
 -moz-box-shadow: 0 -1px 1px 1px #aaa;
 -webkit-box-shadow: 0 -1px 1px 1px #aaa;
 -o-box-shadow: 0 -1px 1px 1px #aaa;
}

www.ebookee.org

http://www.ebookee.org/

The App: Displaying Movie Data via CSS3

[118]

While it is difficult to notice, the sum of these small details helps to reflect the visual
richness of the enterprise application:

box-shadow is supported by all modern browsers except Internet Explorer, which
only supports it from IE9 onwards.

Unfortunately, fake flexible drop shadows are hard to create or
expensive because sometimes it is better to not use shadows in
old browsers, following the principles of graceful degradation.

Adding text shadows
To add shadows to text we cannot use box-shadow because it applies the shadow
to a square container. If we want to add shadows to any text, we should use the
text-shadow property.

The syntax for text-shadow is as follows:

text-shadow: horizontal-shadow vertical-shadow blur color;

text-shadow is not supported by Internet Explorer, but for that case it is possible to
use filter:dropshadow instead. The only downside (apart from compatibility) is
that it is not possible to specify blur.

The syntax for filter:dropshadow is as follows:

filter: dropshadow(color=color, offx=horizontal-shadow,
offy= vertical-shadow);

www.ebookee.org

http://www.ebookee.org/

Chapter 5

[119]

Even shadow effects are thought of as a way to pop out text. We can change the
color property and fake inset elements. We use a light gray and 1px displacement
horizontally and vertically with no blur in our Top 5 Box Office title:

aside h2{
 padding:0 20px 10px;
 margin:0 0 0;
 font-size:1.3em;
 text-shadow: 1px 1px 0px #f2f2f2;
 filter: dropshadow(color=#f2f2f2, offx=1, offy=1);
}

You can check the inset element (right):

We will use a more traditional approach in our navigation bar, including blur
on hover:

nav a{
 color:#ccc;
 text-decoration:none;
}
nav a:hover{
 color:#fff;
 text-shadow: 2px 2px 1px #222;
 filter: dropshadow(color=#222222, offx=2, offy=2);
}

www.ebookee.org

http://www.ebookee.org/

The App: Displaying Movie Data via CSS3

[120]

Some tricks to fake 3D
Some depth effects can be simulated by using CSS previous to Version 3. For
example, we can use borders to simulate depth by placing a dark color border
over a light color one:

aside ol{
 padding:20px 0 0 36px;
 margin:0;
 counter-reset:counter;
 border-top:1px dashed #f8f8f8;
}
aside h2{
 padding:0 20px 10px;
 margin:0 0 0;
 font-size:1.3em;
 text-shadow: 1px 1px 0px #f2f2f2;
 filter: dropshadow(color=#f2f2f2, offx=1, offy=1);
 border-bottom:1px dashed #bbb;
}

We can do this by applying this to our Top 5 Box Office area:

In some cases, the effect is not obvious but helps to give depth as a part of other effects:

header{
 …
 border-bottom:1px solid #222;
}
nav{
 …
 border-top:1px solid #777;
 font-size:.9em;

}

Applying this to the top of the navigation menu, we get the following:

www.ebookee.org

http://www.ebookee.org/

Chapter 5

[121]

With all of our effects applied to our initial layout:

We see this:

www.ebookee.org

http://www.ebookee.org/

The App: Displaying Movie Data via CSS3

[122]

Movies and styles
Suppose that we have a requirement for the creation of a movie list with simple
information, where every element shows more details when you click. Because of
the tight deadline, the client decides to have a simple implementation, so that the
requirement goes to a web designer and as a result we have an initial design:

In a meeting with our web designer and our final client, we decide to show the
movie synopsis on the click of the movie poster. Based on this, let us build a first
approach to our structure.

For a list where the order does not mean anything, we can use an unordered list
ul. We first add movie posters to identify each element easily (using img), and then
we define two blocks using the main-info (to show as a default) and description
(to show on click) sections. In main-info, we add the title as h3, genre and rate as p
with the details class, movie theater with tag p and the theater class, and actors
as p with the actors class. In the details, we add the title as h3 and the description
as p. Now, our structure looks like the following code:

<div id="movies-near-me">

www.ebookee.org

http://www.ebookee.org/

Chapter 5

[123]

 <li itemtype="http://schema.org/Movie" itemscope="" class="">
 <img width="120" alt="The Amazing Spider-Man" src="http://o.
aolcdn.com/os/movies/movie_posters/30101_p_m">
 <section class="main-info">
 <h3 itemprop="name">The Amazing Spider-Man</h3>
 <p itemprop="genre" class="details genre">Action,Drama,Fantasy,S
cience Fiction</p>
 <p class="details">PG-13</p>
 <p class="theater">Regal E-Walk 13 247 West 42nd St</p>
 <p class="actors">Andrew Garfield,Emma Stone,Rhys Ifans,Denis
Leary,Campbell Scott</p>
 </section>
 <section class="description">
 <h3 itemprop="name">The Amazing Spider-Man</h3>
 <p>Typical teenager Peter Parker (Andrew Garfield) embraces
his incredible destiny after uncovering one of his father's most
carefully guarded secrets as Columbia Pictures reboots the Spider-Man
franchis...</p>
 </section>

…

</div>

First, we add the AJAX call to the end of movienow.geolocation.js:

this.getLocation();

Then, we modify the structure of the AJAX callback with our structure:

this.displayShowtimes = function(movies) {
 var movie = null;
 var html = '';
 for (var item in movies.items) {
 movie = movies.items[item];
 var movieDesc=(movie.synopsis.length>200)?movie.synopsis.
substr(0,200)+"...": movie.synopsis;
 var movieHTML='<li itemscope itemtype="http://schema.org/Movie">';
 movieHTML+='<img src="'+movie.poster+'" alt="'+movie.title+'"
width="120" />';
 movieHTML+='<section class="main-info">';
 movieHTML+='<h3 itemprop="name">'+movie.title+'</h3>';
 movieHTML+='<p class="details genre"
itemprop="genre">'+Array(movie.genre).join(', ')+'</p>';
 movieHTML+='<p class="details">'+movie.mpaaRating+'</p>';
 movieHTML+='<p class="theater">'+movie.theater.title+" "+movie.
theater.address+'</p>';

www.ebookee.org

http://www.ebookee.org/

The App: Displaying Movie Data via CSS3

[124]

 movieHTML+='<p class="actors">'+Array(movie.selectedStar).join(',
')+'</p>';
 movieHTML+='</section>';
 movieHTML+='<section class="description">';
 movieHTML+='<h3 itemprop="name">'+movie.title+'</h3>';
 movieHTML+='</section>';
 movieHTML+='';
 html+=movieHTML;
 }
 html+= '';
 $('#movies-near-me').html(html);
 $("#movies-near-me li").click(function(){$(this).
toggleClass("open")});
};

We are creating our DOM structure concatenating a string, but if you want to use a
more elegant solution you can use a client-side template library such as jQuery tmpl
(http://api.jquery.com/category/plugins/templates/), Mustache (http://
mustache.github.com/), Underscore (http://documentcloud.github.com/
underscore/), or Pure (http://beebole.com/pure/). Template libraries allow
you to separate the DOM structure from data. Some of them, such as Underscore,
include logic.

Notice that we limit the size of movie.synopsys
using substr.

As we want to add some highlights in white, we should change the wrapper and
main-info background-color structures to a light gray as we saw in the original
design, so we can use:

.wrapper, #movies-near-me li section.main-info{
 background-color:#f1f1f1;
}

Our Top 5 box is floated right, so we can give some margin to our movies container
allowing for a more flexible design. We will change the original width of our
wrapper structure:

#movies-near-me{
 margin-right:200px;
}

www.ebookee.org

http://www.ebookee.org/

Chapter 5

[125]

Styling our list
We want to apply some animations later, so we will add position:relative to
move the absolute positioned elements inside, using li as our point of reference.
We add overflow:hidden to account for any elements out of our li area. We use
borders top and bottom with light and dark colors respectively to add a sensation
of depth. Finally, we add dark gray as background-color (not in the original design,
but this will be covered with main-info and img) and we set the mouse cursor
attribute to pointer to indicate that the element is clickable:

#movies-near-me li{
 position:relative;
 overflow:hidden;
 border-top:1px solid #fff;
 border-bottom:1px solid #ccc;
 background-color: #202125;
 cursor:pointer;
}

Let's float img to show main-info at its side and not below it. Oh, and some margin
to leave a space between img and description text (that will be hidden for now):

#movies-near-me li img{
 float:left;
 margin-right:10px;
}

We will be defining size, weight, and spacing for our titles as follows:

#movies-near-me li h3{
 font-size:1.2em;
 font-weight:bold;
 padding:10px 0 3px 14px;
}

We will add padding for each information inside p tags:

#movies-near-me li p{
 padding:5px 14px;
}

Add a different text color and size for some details:

#movies-near-me li .details{
 color:#333;
 font-size:.9em;
}

www.ebookee.org

http://www.ebookee.org/

The App: Displaying Movie Data via CSS3

[126]

We will define a different text color and size for the movie theater and italic style
using the following declaration:

#movies-near-me li .theater{
 color:#555;
 font-style:italic;
 font-size:.9em;
}

Applying a new style for actors:

#movies-near-me li .actors{
 color:#666;
 font-size:.8em;
}

We define a static height that is the same as each movie poster image:

#movies-near-me li,#movies-near-me li section.main-info,
#movies-near-me li section.description{
 height:178px;
}

Absolute positioning is applied to main-info (to animate it later). We add margin
equal to the width attribute of our movie poster image and some padding for our
text inside:

#movies-near-me li section.main-info{
 position:absolute;
 top:0;
 left:0;
 right:0;
 margin-left:120px;
 padding: 5px 0;
}

Finally, we will be adding some styles for our hidden description, including an
inset box-shadow attribute to simulate depth:

#movies-near-me li section.description{
 color:#f1f1f1;
 font-size:.9em;
 line-height:1.4em;
 box-shadow:1px -8px 3px 4px #000 inset;
 -moz-box-shadow:1px -8px 3px 4px #000 inset;
 -webkit-box-shadow:1px -8px 3px 4px #000 inset;
 -o-box-shadow:1px -8px 3px 4px #000 inset;
}

www.ebookee.org

http://www.ebookee.org/

Chapter 5

[127]

At this point our design looks the same as the image supplied by our web designer,
but we still cannot see movie details. Before we satisfy this requirement, let us talk
about transitions and animations.

Transitions
Usually we change classes of HTML elements based on interactions. For example,
link styles on hover, show, and hiding of blocks of text on click for tabbed panels,
and so on. Before CSS3, if we wanted to animate these changes, the only way to
do it was with JavaScript. With CSS3, a simple way to do this is with transition.
Having an initial class and a pseudo class triggered on an interaction, we can add a
transition element with the properties that change between class and pseudo class
to animate them.

The syntax for shorthand transition is as follows:

transition: transition-property transition-duration transition-timing-
function transition-delay

transition-timing-function specifies how fast transition occurs. Possible
values for this are: linear, ease, ease-in, ease-out, ease-in-out, and
cubic-bezier(n,n,n,n).

transition-delay is used if we wanted to start our animation in another point in
time other than initial state (0s).

We can use multiple transitions at the same time:

transition: property1 duration1 easing1 start-point1,..., propertyN
durationN easingN start-pointN

Transitions are triggered with interactions and have only
two states: initial and final.

Animations
If we want to implement complex movement that involves multiple states, it is not
possible to use transitions. For this, we have animations. Moreover, you do not need
to trigger an interaction to start an animation (but we shall keep this a secret so as to
avoid a new animated GIF boom in this era).

Animations rely on @keyframes. Similar to their counterpart in animation tools
(including Adobe Flash), a keyframe allows you to define states and the values
of the properties in them.

www.ebookee.org

http://www.ebookee.org/

The App: Displaying Movie Data via CSS3

[128]

For example, we can use:

@keyframes animation-name

{

 from {width:0}

 to {width:50px}

}

Or more complex constructs using percentages and multiple properties:

@keyframes animation-name
{
 0%{width:0;height:0}
 20%{width:5px;height:2px}
 60%{width:7px;height:10px}
 100%{width:50px;height:12px}

}

We can specify as many steps as we want. animation-name is used later to call
our keyframe.

The syntax used for animation is as follows:

animation: animation-name animation-duration animation-timing-function
animation-delay animation-iteration-count animation-direction;

Most of the properties have the same meaning as transitions. animation-iteration-
count specifies the number of times that the animation will repeat (or infinite if it
never stops), animation-direction allows the animation to run normally (normal),
or alternate back and forward (alternate).

Additionally, we have animation-play-state that is not on the shorthand mode.
This property allows us to stop (paused) and start again (running) our animation.

Choosing between transitions and
animations
In our case we have only two states, one that shows the general details of the movie
and a pseudo class state that shows the description of the movie. This should be
triggered on click, so the simplest solution is to use a transition.

www.ebookee.org

http://www.ebookee.org/

Chapter 5

[129]

Although it is possible to use animation in every situation,
it is better to rely on transition for simple requirements
related to common interactions.

In our case, we want to animate the main-info left and right properties.
The initial state is 0 for both:

#movies-near-me li section.main-info{
 top:0;
 left:0%;
 right:0%;
 margin-left:120px;
 padding: 5px 0;
}
#movies-near-me li.open section.main-info{
 left:100%;
 right:-100%;
}

The final state will be left:100% (li right side) and right:-100% (100% to the right
from li right side). We create a pseudo state with class open for li:.

To change the class on click, we add a toggleClass call on click for each li using
jQuery on movienow.js. toggleClass adds and removes the open class:

$("#movies-near-me li").click(function(){$(this).
toggleClass("open")});

If you click on each element, you will notice the change that shows and hides
each description.

To add our transition, we specify the left and right properties and a
duration of .3 seconds for each one. Using multiple browser prefixes we
have the following code:

#movies-near-me li section.main-info{
 top:0;
 left:0%;
 right:0%;
 margin-left:120px;
 padding: 5px 0;
 transition: right .3s, left .3s;
 -moz-transition: right .3s, left .3s;
 -webkit-transition: right .3s, left .3s;
 -o-transition: right .3s, left .3s;
}

www.ebookee.org

http://www.ebookee.org/

The App: Displaying Movie Data via CSS3

[130]

Testing again, we should see a fluid movement that goes from one state to another.

www.ebookee.org

http://www.ebookee.org/

Chapter 5

[131]

If we click on Brave, we will see an animation and then the movie synopsis, as
partially depicted in the following screenshot.

www.ebookee.org

http://www.ebookee.org/

The App: Displaying Movie Data via CSS3

[132]

Let us add an animation to our header to test the animation property. Our header
shows a movie roll film decoration. If we want to roll the roll film, we need to define
some keyframes. In this case, we specify only two states: from and to. Because of
our design, we move the roll horizontally from 0 to -19px (the space between white
rectangles, to create the same initial and end state to our loop). We will add this with
the respective browser prefixes and naming our keyframe with movierolling:

@keyframes movierolling{
 from {background-position: 0 0;}
 to {background-position: -19px 0;}
}
/* Firefox */
@-moz-keyframes movierolling{
 from {background-position: 0 0;}
 to {background-position: -19px 0;}
}
/* Safari and Chrome */
@-webkit-keyframes movierolling{
 from {background-position: 0 0;}
 to {background-position: -19px 0;}
}
/* Opera */
@-o-keyframes movierolling{
 from {background-position: 0 0;}
 to {background-position: -19px 0;}
}

We add movierolling as animation in our header specifying .5 segs
animation:movierolling .5s, an infinite loop animation-iteration-
count:infinite, and a linear easing to make a fluid loop animation-timing-
function:linear. As a result, we have the following code:

header{
 color:#fff;
 height:122px;
 /** HEADER GRADIENT **/
 background-color:#1A1A1A;
 background-image:url(../img/logo_back.png), linear-gradient
(right, rgb(26,26,26) 35%, rgb(40,40,40) 68%, rgb(61,61,61) 85%);
 background-image:url(../img/logo_back.png), -moz-linear-gradient
(right, rgb(26,26,26) 35%, rgb(40,40,40) 68%, rgb(61,61,61) 85%);
 background-image:url(../img/logo_back.png), -webkit-linear-gradient
(right, rgb(26,26,26) 35%, rgb(40,40,40) 68%, rgb(61,61,61) 85%);
 background-image:url(../img/logo_back.png), -o-linear-gradient
(right, rgb(26,26,26) 35%, rgb(40,40,40) 68%, rgb(61,61,61) 85%);

www.ebookee.org

http://www.ebookee.org/

Chapter 5

[133]

 background-image:url(../img/logo_back.png), -ms-linear-gradient
(right, rgb(26,26,26) 35%, rgb(40,40,40) 68%, rgb(61,61,61) 85%);
 border-bottom:1px solid #222;
 animation:movierolling .5s;
 -moz-animation:movierolling .5s;
 -webkit-animation:movierolling .5s;
 -o-animation:movierolling .5s;
 animation-iteration-count:infinite;
 -moz-animation-iteration-count:infinite;
 -webkit-animation-iteration-count:infinite;
 -o-animation-iteration-count:infinite;
 animation-timing-function:linear;
 -moz-animation-timing-function:linear;
 -webkit-animation-timing-function:linear;
 -o-animation-timing-function:linear;
}

And the roll is rolling!

Let us comment out this animation code for now and get back to our application.

Using media queries
The transition that we added to visualize the synopses works nicely, but on mobile
devices we do not have enough space to show the complete synopsis for each movie.
A possible solution could be to hide the movie posters images for mobile devices,
that should give us at least an additional 120 px.

As we saw in previous chapters, we can use media queries to specify different
behaviors for different screen sizes. We can add a case for devices until 737 px:

@media only screen and (max-width: 737px){ … }

Let us apply a transition with the same time of our main-info one, but in this case
only for margin-left:

 #movies-near-me li img{
 transition: margin-left .3s;
 -moz-transition: margin-left .3s;
 -webkit-transition: margin-left .3s;
 -o-transition: margin-left .3s;
 }

www.ebookee.org

http://www.ebookee.org/

The App: Displaying Movie Data via CSS3

[134]

The final position should have a negative margin value to move our images outside
of the li area:

 #movies-near-me li.open img{
 margin-left:-120px;
 }

Additionally, let us hide actors and genres to have more space inside main-info:

 #movies-near-me li .actors, #movies-near-me li .genre{
 display:none;
 }

Now we can see a different interaction in small devices, allowing us to see the
complete description:

www.ebookee.org

http://www.ebookee.org/

Chapter 5

[135]

If we click on The Bourne Legacy, we will see an animation and then the
movie synopsis.

Applying CSS3 selectors
We have been using common selectors, but CSS3 introduces a new set that opens
styling to new possibilities.

Most of these selectors are not supported in Internet Explorer 8 or the previous
versions; you can verify support using the compatibility tables mentioned at the
following link: http://www.quirksmode.org/css/contents.html#CSS3. You can
always substitute these selectors for class declarations on your CSS and add these
classes in your HTML using conditionals in your code.

www.ebookee.org

http://www.ebookee.org/

The App: Displaying Movie Data via CSS3

[136]

We will not include this code as a part of our project, but you can test it using
styles.css (code commented) in the 3.- selectors folder to visualize the results.

•	 :first-of-type: This selects the first element with the selector's type. Let
us say we want to apply a different background-color to the first element
inside our movie list. We can select the first appearance of li followed by
the selector that indicates which element must change its background color:
#movies-near-me li:first-of-type section.main-info{
 background-color:#ccc;
}

•	 :last-of-type: This is similar to the previous selector, but it selects the last
element. Applying the same case as before:
#movies-near-me li:last-of-type section.main-info{
 background-color:#ccc;
}

•	 :only-of-type: This selects only unique elements of the type indicated.
Using our movie's details, if we apply the following:
#movies-near-me li section.main-info h3:only-of-type{
 background-color:#ccc;
}

We can add background-color to h3 since it is only h3 contained by its
parent, but if we use the following, nothing is selected because there are
multiple p elements inside:

#movies-near-me li section.main-info p:only-of-type{
 background-color:#ccc;
}

•	 :only-child: This selects elements whose parents only contain them. For
example, using this selector we can change article background-color
because it is the only element contained by its parent.
article:only-child{
 background-color:#ccc;
}

But if we select section, nothing will be selected because there are multiple
children in its parent.

section:only-child{
 background-color:#ccc;
}

www.ebookee.org

http://www.ebookee.org/

Chapter 5

[137]

•	 :nth-child(n): This allows us to specify the element we want to select
using positions. If we want to select the third element in our list:
#movies-near-me li:nth-child(3) section.main-info{
 background-color:#ccc;
}

•	 :nth-last-child(n): This applies the same principle as the prior selector,
but counting from the last element:
#movies-near-me li:nth-last-child(2) section.main-info{
 background-color:#ccc;
}

•	 :nth-of-type(n): This uses the same principle as before, but it will count
only elements of the same type. For example, if we apply p:nth-of-type(2)
to select the second element, it will ignore any differences to p. Selecting the
second p element, we have:
#movies-near-me li section.main-info p:nth-of-type(2){
 background-color:#ccc;
}

•	 :nth-last-of-type(n): This does the same, but counts from the
last element:
#movies-near-me li section.main-info p:nth-last-of-type(2){
 background-color:#ccc;
}

•	 :last-child: This selects the element that is the last child of its parent.
Selecting the last movie, we have the following code snippet:
#movies-near-me li:last-child section.main-info{
 background-color:#ccc;
}

•	 :root: This allows us to select the html root tag. Let us change the
background-color value of html, but first we reset the already
defined background-color attribute for html and body tags:
html,body{
 background:none;
}

Add background-color to root (html):

:root{
 background-color:#666;
}

www.ebookee.org

http://www.ebookee.org/

The App: Displaying Movie Data via CSS3

[138]

•	 :empty: This selects elements with no children or text. Let us show in red
div elements with no content in our application:
div:empty{
 background-color:#ff0000;
}

You should see the logo area and div.push in red.

•	 :target: This selects elements with the id value equal to the active anchor.
To test this we can define a link with an anchor and an id attribute to mark
the link as active:
<nav>

 Home

</nav>

We can define the style to mark the text in yellow:
:target{
 color:#FFFF00;
}

If you click the link, you will see the color change.

•	 :not(selector): This selects all elements that do not fulfill the conditions of
the selector. For example, if we want to select all p elements except the ones
with the theater class:
p:not(.theater){
 background-color:#ccc;
}

•	 :enabled: This selects input fields with no disabled property. If we have,
<input type="button" value="enable" />, we can define an orange
border using the following code:
input:enabled{
 border:1px solid #E38217;
}

•	 :disabled: This selects input fields with the disabled property. As before
we can have:
<input type="button" value="disable" disabled="disabled" />
input:disabled{
 border:1px solid #E38217;
}

www.ebookee.org

http://www.ebookee.org/

Chapter 5

[139]

•	 :checked: This selects input with type checkbox that are checked. If we
have the following code, we can see that the element changes style when it
is checked:
<label><input type="checkbox" />Checked</label>
Applying style:
input:checked{
 width:20px;
 height:20px;
}

•	 element1~element2: This selects element2 preceded by element1. If we
want to select p elements preceded by h3, we can apply the following:
h3~p{
 background-color:#ccc;
}

•	 [attribute^=value]: This selects elements whose "attribute" begins with
a particular "value". For example, let us hide the poster's images for every
image whose alt attribute starts with Dark:
img[alt^="Dark"]{
 display:none;
}

•	 [attribute$=value]: This selects elements whose "attribute" ends with
a particular "value". For example, let us hide the poster's images for every
image whose alt attribute ends with s:
img[alt$="s"]{
 display:none;
}

•	 [attribute*=value]: This selects elements whose "attribute" contains a
"value". For example, let us hide the poster's images for every image whose
alt attribute contains ar:

img[alt*="ar"]{
 display:none;
}

www.ebookee.org

http://www.ebookee.org/

The App: Displaying Movie Data via CSS3

[140]

Summary
New CSS3 features are not a new introduction to web development; they are
a simplification of the execution. Before CSS3, it was possible to use gradients,
drop shadows, rounded corners and even animations, but implementations were
expensive and the scalability intricate. With all these possibilities, we should not
forget old techniques that rely on images and complex JavaScript because even
though we all hope for a simpler future based only in new generation browsers, we
must face the problems of old generation browsers.

We have shown how to apply the most used CSS3 properties to our enterprise
applications and how to manage compatibility issues related with styles across
the browsers. Additionally, we introduced CSS3 animations and transitions, so
now we are capable of selecting the right solution for our projects. Finally, we
can apply media queries and selectors to our stylesheets for more complex and
elegant solutions.

The following chapter will introduce HTML5 video and audio management,
JavaScript control of media reproduction, and basic strategies to grant
backward compatibility.

www.ebookee.org

http://www.ebookee.org/

The App: Trailers via
HTML5 Video

One of the most interesting features that HTML5 introduces is the ability to
reproduce multimedia without additional plugins. Although this appears to be
the right solution for any enterprise application that involves media management,
there are still many factors to consider. This chapter covers the HTML5 video and
audio tags, their use to play media, and some caveats related to the current state of
this technology.

As an example we are going to build a video player for trailers and an audio player
for podcasts.

This chapter includes:

•	 HTML5 video introduction
•	 Implementing a video player
•	 HTML5 audio introduction
•	 Implementing an audio player
•	 How I learned to stop worrying and love Flash

Introducing HTML5 video
For many years, browsers have relied on video reproduction to external plugins like
Real Player, Quicktime, and Flash. Having 99 percent penetration of the market,
Flash became a de facto standard for media playback; however, in the last few years,
mobile devices have replaced this solution with native apps and HTML5 solutions.

www.ebookee.org

http://www.ebookee.org/

The App: Trailers via HTML5 Video

[142]

HTML5 video surged to become a standard and elegant way to embed videos. While
everything points to HTML5's video solution, the lack of agreement on which video
formats should be supported has obstructed its use.

Ideally, there should be at least one format supported across all browsers, but every
company has its own view on the matter. While Microsoft and Apple support MP4
H.264 (because they are patent holders of this format), Google and Mozilla back
Ogg Theora and VP8 WebM as royalty-free solutions. The following table shows the
browser support for each video format:

Browser Operative
System

Ogg Theora MP4 H.264 VP8 WebM

Internet
Explorer

Windows Manual install 9.0 Manual install
Windows Phone No No

Mozilla
Firefox

Windows 3.5 Manual install 4.0
Unix No
Other

Google
Chrome

All supported 3.0 3.0 (removal
planned)

6.0

Safari iOS No 3.1 No
MacOS Manual install Manual install
Windows Manual install

Opera All supported 10.50 No 10.60

A new compression standard known as High Efficiency
Video Coding (HEVC) or H.265 could be in commercial
products by 2013. It is almost twice as effective as the
current H.264 standard.

Fortunately, the video tag supports the use of multiple sources allowing web
browsers to select the video format supported, but this means each video needs
to be encoded at least twice. For your enterprise, this translates to extra costs of
encoding and storage.

Some implementations rely on the video file extension too.
For example, you cannot play a video on iOS devices with
the .f4v extension even if it is using MP4 H.264 format.

www.ebookee.org

http://www.ebookee.org/

Chapter 6

[143]

Most web browsers support progressive download instead of streaming. While
Flash has its own proprietary protocol to stream (although an incomplete version of
the specification has been released for public use) known as Real Time Messaging
Protocol RTMP, only Safari, Safari iOS, and some Android browsers support a new
streaming protocol: HTTP Live Streaming (HLS) implemented by Apple Inc.

With progressive download, it is fairly easy to copy the video file from the browser
cache, a facility that will make media pirates thankful. Furthermore, with a content
delivery network that supports adaptive bitrate streaming, you can serve different
video qualities depending on user bitrate if you are using streaming, but this is not
possible using a progressive download.

Implementing a video player
MovieNow users would love to have a way to visualize trailers of their favorite
movies. For that, we are going to create a player with basic functionality: play,
pause, seek, volume control, and full screen.

We are going to use as an example a trailer of Sintel, an animated movie created
with a free 3D animation tool known as Blender. This video trailer is hosted on the
http://www.w3.org/ site in three major video formats: MP4 (mp4), WebM (webm),
and Ogg Theora (ogv).

First, let's create a file called trailer.html and use our main page structure.

Inside the article tag, we use the video tag, which allows us to specify an initial
image using the poster attribute to specify image path, and to show default controls
using the controls attribute.

<video poster="img/trailer-poster.png" controls>

You can specify the src property directly for the video tag, but to support multiple
video format files we are going to declare our files using the source tag inside
video. The source tag's src attribute allows us to define the video path and the
type attribute (to specify the format).

<source type="video/mp4" src="path"></source>

www.ebookee.org

http://www.ebookee.org/

The App: Trailers via HTML5 Video

[144]

In this case we are going to use:

•	 http://media.w3.org/2010/05/sintel/trailer.mp4 for Chrome
(while it is still supported), Internet Explorer, Safari, and Safari iOS

•	 http://media.w3.org/2010/05/sintel/trailer.webm for Firefox,
Chrome, and Opera

•	 http://media.w3.org/2010/05/sintel/trailer.ogv for Firefox,
Chrome, Opera, and others

In this case, it is possible to use only two formats, but we will use three for our
example. Finally we have:

<video poster="img/trailer-poster.png" controls>
 <source type="video/mp4" src="http://media.w3.org/2010/05/sintel/
trailer.mp4"></source>

 <source type="video/webm" src="http://media.w3.org/2010/05/sintel/
trailer.webm"></source>
 <source type="video/ogg" src="http://media.w3.org/2010/05/sintel/
trailer.ogv"></source>

 <p>Video not supported.</p>
</video>

Notice that if no video is supported it shows <p>Video not supported.</p>.
This can be whatever HTML content you want.

If your content delivery network supports HLS, you can
use a video encoded as H.264 broken in segments and use
a .m3u8 playlist as an index file. For this, you can use a
tool like Apple Stream Segmenter.

As every browser has its implementation, our player looks different in Firefox,
Chrome, Safari, and so on. Our player renders differently on different platforms.

www.ebookee.org

http://www.ebookee.org/

Chapter 6

[145]

In Firefox our player renders as shown in the following screenshot:

In chrome our player renders as shown in the following screenshot:

Chrome

www.ebookee.org

http://www.ebookee.org/

The App: Trailers via HTML5 Video

[146]

In an iPhone our player will appear as follows:

When it is necessary, reflect the enterprise visual style in the player or add custom
functionality. It is possible to hide the default controllers and build your own.

Custom controls
For MovieNow we will be creating play/pause, seek, volume, and full screen
controls. Our design can be seen in the following image:

www.ebookee.org

http://www.ebookee.org/

Chapter 6

[147]

To simplify the task of creating a progress and seek bar as well as a volume bar,
we use jQuery UI. jQuery UI is a JavaScript library that implements the most
common user interface elements and interactions like sliders, accordions, tabs,
and so on. In our case, we created a custom download with the UI Darkness theme
(http://jqueryui.com/download).

After saving our jQuery UI JavaScript file in the js folder and stylesheets in the css
folder, we import them as always with JavaScript before the end of our body tag:

<script src="js/jquery-ui-1.8.23.custom.min.js"></script>

And css in our head tag:

<link rel="stylesheet" href=" css/ui-darkness/jquery-ui-1.8.23.custom.
css" type="text/css" />

To support jQuery UI interactions in touch devices, we import the Touch Punch
JavaScript library (http://touchpunch.furf.com/):

<script src="js/jquery.ui.touch-punch.min.js"></script>

Now that we have all the libraries we need in place, we can remove the controls
attribute from the video tag to hide the default controls.

<video poster="img/trailer-poster.png" class="media">

With this in place, let us define an HTML structure for our controls:

<div class="media-container">
 <div>
 <div class="media-area">
 <video poster="img/trailer-poster.png" class="media">

 <source type="video/mp4" src="http://media.w3.org/2010/05/
sintel/trailer.mp4"></source>

 <source type="video/webm" src="http://media.w3.org/2010/05/
sintel/trailer.webm"></source>

 <source type="video/ogg" src="http://media.w3.org/2010/05/
sintel/trailer.ogv"></source>

 <p>Video not supported.</p>
 </video>
 </div>
 <div class="controls">
 <div class="play-button"></div>
 <div class="seek"></div>

www.ebookee.org

http://www.ebookee.org/

The App: Trailers via HTML5 Video

[148]

 <div class="fullscreen-button"></div>
 <div class="volume-container">
 <div class="volume-slider-container">
 <div class="volume-slider"></div>
 </div>
 <div class="volume-button"></div>
 </div>
 <div class="timer">00:00</div>
 </div>
 </div>
</div>

We have three main classes:

•	 media-container – wraps all our players
•	 media-area – wraps video tag
•	 controls – is the bottom bar that contains our controls

Inside controls we have:

•	 play-button – is the player's play/pause button
•	 seek – the progress/seek bar
•	 fullscreen-button – is the full screen functionality button

•	 volume-container – is the container of volume-button

•	 volume-slider – is used to set the volume

•	 timer – is an indicator of time elapsed in minutes and seconds (mm:ss)

We are using classes although jQuery selectors work faster
using IDs because we want to permit the use of multiple
players in the same page if necessary.

Styling
To start, we add some additional styles to style.css. We define a black background
and remove the outline from all elements marked with the media class:

.media{
 width:100%;
 background-color:#000;
 outline:none;
}

www.ebookee.org

http://www.ebookee.org/

Chapter 6

[149]

We add a margin for the Top 5 Box Office section:

.media-container{
 margin-right:200px;
}

We remove that margin for small devices where we hide the Top 5 Box Office section:

@media only screen and (max-width: 737px){
 …
 .media-container{
 margin-right:0;
 }
}

These styles are related to layout and not directly to our player. To make styles for
our video player, let us create a stylesheet called mediaplayer.css and import it in
the head tag of trailer.html.

<link rel="stylesheet" href="css/mediaplayer.css" type="text/css" />

Buttons and image sprites
We define our controls area using the controls class, set a black background, set
a height of 35px (same line height to center text vertically), and set position to
relative (so if we set absolute elements inside the positioning, they will be relative
to controls).

.controls{
 background-color:#000;
 height:35px;
 line-height:35px;
 position:relative;
}

We have an image sprite with all of our player controls called player-control.png.
You can find it inside the img folder.

www.ebookee.org

http://www.ebookee.org/

The App: Trailers via HTML5 Video

[150]

The use of sprites is based on masking the visible element to show it and hiding the
rest. In this case, suppose we want to show only our pause button. Our button has
35 x 35 pixels with player-control.png as the background image; the only part of
the image that will be visible is inside our button area, so we can use background
positioning to show different icons as is shown here:

Defining the play, volume, and full screen buttons that we have:

.play-button,.volume-button,.fullscreen-button{
 width:35px;
 height:35px;
 cursor:pointer;
 background-image:url(../img/player-control.png);
}

As we saw before, we move -35px on the y axis to show our pause icon:

.play-button.playing{
 background-position:0 -35px;
}

We apply the same principle to the full screen button:

.fullscreen-button{
 background-position:0 -105px;
}

In the case of the volume button, we are going to have a slider to set the volume
below it, so we set the background color to hide elements below and set the
position to absolute with z-index of 1000 to be over the slider:

.volume-button{
 background-position:0 -70px;
 position:absolute;
 left:0;
 background-color:#000;
 z-index:1000;
}

www.ebookee.org

http://www.ebookee.org/

Chapter 6

[151]

Styling seek and volume bars
The seek and volume bars can be styled as follows:

1.	 Let us define the font styles in timer:
.timer{
 color:#fff;
 font-size:.8em;
 padding:1px 8px 0;
}

2.	 At this point, we position play-button by floating it to the left-hand side
and the timer, volume, and full screen to the right-hand side:
.play-button,.seek{
 float:left;
}
.timer,.volume-container,.fullscreen-button{
 float:right;
}

3.	 We can float the video tag left with the media class to avoid extra spacing in
some browsers:
.media{
 float:left;
}

4.	 Use overflow:hidden to wrap media-area around media:
.media-area{
 overflow:hidden;
 background-color:#000;
}

5.	 Using absolute positioning for the seek bar, we can dynamically expand the
seek area using the left and right properties:

.seek{
 top:12px;
 left:48px;
 right:133px;
 height:10px;
 position:absolute;
}

www.ebookee.org

http://www.ebookee.org/

The App: Trailers via HTML5 Video

[152]

For this example, we created a flexible player to show some
techniques related to styles, but it is good practice to define
static dimensions for your player. Furthermore, it is better to
use standard resolutions. The use of standard resolutions can
improve performance for media reproduction on the client.

Features detection
Some of the video tag features are not available to all browsers via the HTML5
JavaScript API. For example, iOS devices disallow the use of volume control
with JavaScript; it is only possible to use the default controls or hardware
controls. Manipulating full screen controls using JavaScript is only possible in
WebKit browsers.

We can define some classes to hide buttons when full screen or volume capabilities
are not available. First, we hide our buttons:

.no-fullscreen .fullscreen-button{
 display:none;
}
.no-volume .volume-container{
 display:none;
}

Then, we change the right spacing of our seek bar:

.no-volume .seek,.no-fullscreen .seek{
 right:88px;
}
.no-fullscreen.no-volume .seek{
 right:53px;
}

Styling sliders
Since we are using jQuery UI to implement seek and volume sliders, we want to
override some styles. jQuery UI sliders use the following:

•	 ui-slider-handle: The circle that we use to drag and seek.
•	 ui-state-active: The class added to ui-slider-handle while we drag.
•	 ui-slider-range: The bar that defines the active area. In our case, it is a

blue bar.

www.ebookee.org

http://www.ebookee.org/

Chapter 6

[153]

Let's see the process step by step.

1.	 We want the same color for ui-slider-handle even when it is active, so we
remove the background image used by jQuery UI:
.ui-state-active{
 background-image:none;
}

2.	 Add the cursor pointer and remove the outline:
.ui-slider .ui-slider-handle{
 cursor:pointer;
 outline:none;
}

3.	 Change ui-slider-handle size, rounded corners, and move it a little to the
top (only for our seek slider):
.seek .ui-slider-handle {
 width:16px;
 height:16px;
 top: -4px;
 -moz-border-radius:10px;
 -ms-border-radius:10px;
 -webkit-border-radius:10px;
 border-radius:10px;
}

4.	 Modify the rounded corners of the progress bar and add some
inner shadows:
.ui-slider-range {
 -moz-border-radius:15px;
 -ms-border-radius:15px;
 -webkit-border-radius:15px;
 border-radius:15px;
 box-shadow:inset 0 -3px 3px #39a2ce;
}

5.	 Change the seek bar progress color to a blue gradient:
.seek .ui-slider-range {
 background: #4cbae8;
 background-image:-moz-linear-gradient(top, #4cbae8, #39a2ce);
 background-image:-webkit-gradient(linear,left top,left
bottom,color-stop(0, #4cbae8),color-stop(1, #39a2ce));
}

www.ebookee.org

http://www.ebookee.org/

The App: Trailers via HTML5 Video

[154]

6.	 Change the volume progress color to a solid blue:
.volume-slider .ui-slider-range {
 background:#4cbae8;
}

7.	 Center our volume slider using margin and set width and height:
.volume-slider{
 margin:12px auto;
 width:6px;
 height:76px;
}

8.	 Set the volume handle dimensions and positioning:
.volume-slider .ui-slider-handle {
 width:12px;
 height:12px;
 left: -4px;
}

9.	 To show and hide the volume slider, we set the volume-container
positioning as relative:
.volume-container{
 width:35px;
 height:35px;
 position:relative;
}

10.	 Set the slider positioning as absolute. We set z-index to 900 (below the
volume button), overflow to hidden, and a CSS transition for all properties:
.volume-slider-container{
 -moz-transition:all 0.1s ease-in-out;
 -ms-transition:all 0.1s ease-in-out;
 -o-transition:all 0.1s ease-in-out;
 -webkit-transition:all 0.1s ease-in-out;
 transition:all 0.1s ease-in-out;
 position:absolute;
 bottom:1px;
 left:0;
 height:34px;
 width:35px;
 background-color:#000;
 z-index:900;
 overflow:hidden;
}

www.ebookee.org

http://www.ebookee.org/

Chapter 6

[155]

11.	 We can then resize volume-container on hover and volume-slider-
container with it:

.volume-container:hover .volume-slider-container{
 height:135px;
}

Now that our player looks the same, let us add all the interactions needed
using JavaScript.

Adding interactions using JavaScript
To write our JavaScript code, we create a movienow.mediaplayer.js file in the js
folder and include it before our body ends:

<script src="js/movienow.mediaplayer.js"></script>

Initial settings
We start our JavaScript the same way we started with geolocation by adding
mediaplayer to our namespace and defining the that variable:

var movienow = movienow || {};
movienow.mediaplayer = (function(){
 var that = this;

 /** OUR CODE GOES HERE **/	
})();

Initializing video controllers
When the ready document is triggered, we add the click event listeners to buttons,
detect full screen capabilities, and add the no-fullscreen class if it is not available;
initialize the jQuery UI slider for seeking and for volume control if it is available.
Notice that we manage Mozilla, WebKit, and standard full screen capabilities with
different functions. If volume is not available, we add the no-volume class and
finally we bind the events of time update and reproduction ended.

$(document).ready(function(){

 $(".media-container .play-button").click(that.play);
 var mediaElements=$(".media-container .media");

 if (mediaElements[0].fullscreenEnabled) {
 $(".media-container .fullscreen-button").click(that.fullScreen);
 }else if(mediaElements[0].mozRequestFullScreen){

www.ebookee.org

http://www.ebookee.org/

The App: Trailers via HTML5 Video

[156]

 $(".media-container .fullscreen-button").click(that.
mozFullScreen);
 }else if(mediaElements[0].webkitRequestFullScreen){
 $(".media-container .fullscreen-button").click(that.
webkitFullScreen);
 }else{
 $(".media-container").addClass("no-fullscreen");
 }
 $(".media-container .seek").each(function() {
 var duration=that.getPlayer($(this))[0].duration;
 duration = duration?duration:0;
 $(this).slider({
 value: 0,
 step: 0.01,
 orientation: "horizontal",
 range: "min",
 max: duration,
 start: function(event,ui){
 var mediaArea=that.getPlayer($(event.target));

 mediaArea.addClass("seeking");
 mediaArea[0].pause();
 },
 slide:function(event,ui){
 sliderTime(event,ui);
 },
 stop:function(event,ui){
 var mediaArea=that.getPlayer($(event.target));
 controls=that.controls(mediaArea);
 sliderTime(event,ui);
 if(controls.find(".play-button").hasClass("playing")){
 mediaArea[0].play();
 }
 mediaArea.removeClass("seeking");
 }
 });
 if(navigator.userAgent.match(/(iPhone|iPod|iPad)/i)){
 $(".media-container").addClass("no-volume");
 }else{
 that.controls($(this)).find(".volume-slider").slider({
 value: 1,
 step: 0.05,
 orientation: "vertical",
 range: "min",

www.ebookee.org

http://www.ebookee.org/

Chapter 6

[157]

 max: 1,
 animate: true,
 slide:function(event,ui){
 var mediaArea=that.getPlayer($(event.target));
 mediaArea[0].volume=ui.value;
 }
 });
 }
 });
 mediaElements.bind("timeupdate", that.timeUpdate);
 mediaElements.bind('ended', that.endReproduction);
});

Setting the seek slider
To set the seek slider, we set the initial value value to 0 and step to 0.01 to have a
fluid movie movement on drag, orientation to horizontal, and range to min to
consider the range between minimum value and current handle position value:

$(this).slider({
 value: 0,
 step: 0.01,
 orientation: "horizontal",
 range: "min",
 max: duration,
 start: function(event,ui){
 var mediaArea=that.getPlayer($(event.target));

 mediaArea.addClass("seeking");
 mediaArea[0].pause();
 },
 slide:function(event,ui){
 sliderTime(event,ui);
 },
 stop:function(event,ui){
 var mediaArea=that.getPlayer($(event.target));
 controls=that.controls(mediaArea);
 sliderTime(event,ui);
 if(controls.find(".play-button").hasClass("playing")){
 mediaArea[0].play();
 }
 mediaArea.removeClass("seeking");
 }
});

www.ebookee.org

http://www.ebookee.org/

The App: Trailers via HTML5 Video

[158]

There are three events managed:

•	 start is triggered when the slider handle is pressed. Notice that we get
video using the getPlayer function (this method will be declared later).
We can pause the reproduction and add the seeking class to indicate that
we are still dragging.

•	 slide is triggered while we drag. We call the slideTime function to set the
progress bar position and time text.

•	 stop is triggered on mouse up. We get the video tag and controls using the
controls function, call sliderTime and restore the previous state of our
player (playing or paused) using the play-button playing class. Finally,
we remove seeking to indicate that we stop dragging.

Initializing the volume slider
If volume is available, we initialize the volume slider:

that.controls($(this)).find(".volume-slider").slider({
 value: 1,
 step: 0.05,
 orientation: "vertical",
 range: "min",
 max: 1,
 animate: true,
 slide:function(event,ui){
 var mediaArea=that.getPlayer($(event.target));
 mediaArea[0].volume=ui.value;
 }
});

Notice that the current value of our slider is contained in the ui.value variable, and
to set it in our player we use the volume property shown as follows:

mediaArea[0].volume=ui.value;

Functions to get DOM objects
We define two functions to execute jQuery selectors for the main player
(the media class for the video tag or the audio tag if it is the case) and controls
(the controls class):

this.getPlayer= function(domObject){
 return $(domObject.parentsUntil(".media-container").find(".media"));
};

www.ebookee.org

http://www.ebookee.org/

Chapter 6

[159]

this.controls= function(domObject){
 return $(domObject.parentsUntil(".media-container").find(".
controls"));
};

Play and pause
For play-button, we toggle the playing class and set our player to the playing
(player[0].play()) or paused (player[0].pause()) state.

this.play = function(event){
 var button=$(event.target);
 var player=that.getPlayer(button);
 if(button.hasClass("playing")) {
 player[0].pause();
 button.removeClass("playing");
 } else {
 player[0].play();
 button.addClass("playing");
 }
};

Full screen
Full screen functionality is managed in different ways by every browser. To enter the
full screen mode we use element.requestFullscreen() and its equivalents
element.mozRequestFullScreen() for Firefox and element.webkitEnter
FullScreen() for Safari and Chrome. To exit full screen mode, we use
document.cancelFullScreen() , document.mozCancelFullScreen()
for Firefox, and document.webkitCancelFullScreen() for Safari and
Chrome. Finally, to validate if the browser is in full screen mode we use
document.fullScreen, document.mozfullScreen for Firefox, and
this.webkitFullScreen for Safari and Chrome.

Even user experience-wise the browsers vary; while Chrome and Safari show their
own video controllers on full screen, Firefox doesn't show any controls by default.
Full screen capabilities are not available in Internet Explorer. Our implementation
verifies the mode and toggles between full screen and normal mode.

Using standard calls we have:

this.fullScreen = function(event){
 var button=$(event.target);
 var player=that.getPlayer(button);
 if(document.fullScreen){
 document.exitFullScreen();

www.ebookee.org

http://www.ebookee.org/

The App: Trailers via HTML5 Video

[160]

 } else {
 player[0].requestFullScreen();
 }
};

Using the Firefox prefix:

this.mozFullScreen = function(event){
 var button=$(event.target);
 var player=that.getPlayer(button);
 if(document.mozfullScreen){
 document.mozCancelFullScreen();
 } else {
 player[0].mozRequestFullScreen();
 }
};

Finally, for Safari and Chrome we have:

this.webkitFullScreen = function(event){
 var button=$(event.target);
 var player=that.getPlayer(button);
 if(document.webkitIsFullScreen){
 document.webkitCancelFullScreen();
 } else {
 player[0].webkitEnterFullScreen();
 }
};

Notice that the event to exit full screen mode is not being triggered because the
browsers manage that functionality using the Esc key, but depending on future
implementations of the HTML5 full screen specification on every browser, we could
show our controller in full screen mode and take advantage of this.

Format time
We define the timeFormat function to get the player time in seconds and return it in
mm:ss format:

this.timeFormat=function(seconds){
 var m=Math.floor(seconds/60)<10?"0"+Math.floor(seconds/60):Math.
floor(seconds/60);
	
 var s=Math.floor(seconds-(m*60))<10?"0"+Math.floor(seconds-
(m*60)):Math.floor(seconds-(m*60));
 return m+":"+s;
};

www.ebookee.org

http://www.ebookee.org/

Chapter 6

[161]

Controlling time
Every time we use the seek slider, we set media player time using the currentTime
property, which triggers the timeupdate event calling the timeUpdate function.

this.sliderTime = function(event, ui) {
 var mediaArea=that.getPlayer($(event.target));
 var controls=that.controls(mediaArea);
		
 mediaArea[0].currentTime=ui.value;
};

timeUpdate sets the time in mm:ss and if the player is not in the seeking state
(defined by the seeking class in mediaArea), it updates the progress/seek bar
too. This function is invoked when the timeupdate event is triggered:

this.timeUpdate = function(event) {
 var mediaArea=$(event.target);
 var controls=that.controls(mediaArea);
 var currentTime=mediaArea[0].currentTime;
 var duration=mediaArea[0].duration;
 var timer=$(controls.find(".timer"));
 if(currentTime>=0)timer.html(that.timeFormat(currentTime));
 if(!mediaArea.hasClass("seeking")){
 var seekSlider=$(controls.find(".seek"));
 if(seekSlider.slider("option","max")==0){
 var newDuration=mediaArea[0].duration;
		
 newDuration=newDuration?newDuration:0;
			
 seekSlider.slider("option","max", newDuration);
 }
 seekSlider.slider("value", currentTime);
 }
};

Until the end of time
When the reproduction ends, endReproduction is called and we remove the
playing class from play-button to indicate that we have finished the reproduction:

this.endReproduction = function(event) {
 var mediaArea=$(event.target);
 $(that.controls(mediaArea)).find(".play-button").
removeClass("playing");
};

www.ebookee.org

http://www.ebookee.org/

The App: Trailers via HTML5 Video

[162]

The final script should look like the following code snippet:

var movienow = movienow || {};
movienow.mediaplayer = (function(){
 var that = this;
 $(document).ready(function(){
 /*** play/pause button click event listener ***/

 $(".media-container .play-button").click(that.play);

 var mediaElements=$(".media-container .media");
 if(mediaElements[0].fullscreenEnabled) {

 /*** fullscreen button click event listener ***/

 $(".media-container .fullscreen-button").click(that.fullScreen);
 }else if(mediaElements[0].mozRequestFullScreen){

 /*** fullscreen button click event listener mozilla ***/

 $(".media-container .fullscreen-button").click(that.
mozFullScreen);
 }else if(mediaElements[0].webkitRequestFullScreen){
 /*** fullscreen button click event listener webkit ***/

 $(".media-container .fullscreen-button").click(that.
webkitFullScreen);
 }else{
 /*** we add class no-fullscreen to hide fullscreen button when
it is not available ***/

 $(".media-container").addClass("no-fullscreen");

 }

 /*** Loop to add jquery ui sliders to progress/seek bar and volume
***/

 $(".media-container .seek").each(function() {
 /*** Duration of the media ***/

 var duration=that.getPlayer($(this))[0].duration;

 duration = duration?duration:0;

 $(this).slider({
 value: 0,

 step: 0.01,

www.ebookee.org

http://www.ebookee.org/

Chapter 6

[163]

 orientation: "horizontal",

 range: "min",

 max: duration,

 /*** Start seek ***/
 start: function(event,ui){
 var mediaArea=that.getPlayer($(event.target));

 /*** Class seeking to know status of the media player ***/

 mediaArea.addClass("seeking");
 mediaArea[0].pause();

 },

 /*** During seek ***/

 slide:function(event,ui){

 sliderTime(event,ui);
 },

 /*** Stop seek ***/

 stop:function(event,ui){

 var mediaArea=that.getPlayer($(event.target));
 var controls=that.controls(mediaArea);

 sliderTime(event,ui);
 /*** We restore the status (paying or not) to the one before
start seeking ***/

 if(controls.find(".play-button").hasClass("playing")){

 mediaArea[0].play();

 }

 mediaArea.removeClass("seeking");
 }

 });

 /*** Volume controllers ***/

 if(navigator.userAgent.match(/(iPhone|iPod|iPad)/i)){

www.ebookee.org

http://www.ebookee.org/

The App: Trailers via HTML5 Video

[164]

 /*** ios devices only allow to change volume using the device
hardware, so we hide volume controllers ***/

 $(".media-container").addClass("no-volume");

 }else{

 /*** volume slider controller ***/

 that.controls($(this)).find(".volume-slider").slider({

 value: 1,

 step: 0.05,

 orientation: "vertical",

 range: "min",

 max: 1,

 animate: true,

 slide:function(event,ui){

 var mediaArea=that.getPlayer($(event.target));
 mediaArea[0].volume=ui.value;

 }
 });

 }

 });

 /*** event triggered when time change on media player ***/

 mediaElements.bind("timeupdate", that.timeUpdate);

 /*** event triggered when reproduction end on media player ***/
 mediaElements.bind('ended', that.endReproduction);
 });

 /*** get player using jQuery selectors ***/

 this.getPlayer= function(domObject){

www.ebookee.org

http://www.ebookee.org/

Chapter 6

[165]

 return $(domObject.parentsUntil(".media-container").find(".
media"));

 };

 /*** get control area using jQuery selectors ***/

 this.controls= function(domObject){

 return $(domObject.parentsUntil(".media-container").find(".
controls"));

 };

 /*** play or pause and chenge play button icon ***/

 this.play = function(event){

 var button=$(event.target);

 var player=that.getPlayer(button);

 if(button.hasClass("playing")) {

 player[0].pause();
 button.removeClass("playing");
 }else{
 player[0].play();

 button.addClass("playing");
 }
 };

 /*** set on and off fullscreen mode ***/

 this.fullScreen = function(event){

 var button=$(event.target);

 var player=that.getPlayer(button);

 if($(document).context.fullScreenElement){

 $(document).context.exitFullscreen();
 }else{
 player[0].requestFullscreen();
 }

 };

www.ebookee.org

http://www.ebookee.org/

The App: Trailers via HTML5 Video

[166]

 this.mozFullScreen = function(event){

 var button=$(event.target);

 var player=that.getPlayer(button);

 if($(document).context.mozFullScreenElement){

 $(document).context.mozCancelFullScreen();
 }else{
 player[0].mozRequestFullScreen();
 }

 };

 this.webkitFullScreen = function(event){

 var button=$(event.target);
 var player=that.getPlayer(button);

 if($(document).context.webkitIsFullScreen){

 $(document).context.webkitCancelFullScreen();
 }else{
 player[0].webkitEnterFullScreen();
 }

 };

 /*** set time format to mm:ss ***/

 this.timeFormat=function(seconds){
 var m=Math.floor(seconds/60)<10?"0"+Math.floor(seconds/60):Math.
floor(seconds/60);

 var s=Math.floor(seconds-(m*60))<10?"0"+Math.floor(seconds-
(m*60)):Math.floor(seconds-(m*60));
 return m+":"+s;

 };

 /*** use by seek slider, change slider position and time on
controllers ***/

 this.sliderTime = function(event, ui) {
 var mediaArea=that.getPlayer($(event.target));

 var controls=that.controls(mediaArea);

 mediaArea[0].currentTime=ui.value;

www.ebookee.org

http://www.ebookee.org/

Chapter 6

[167]

 };

 /*** use by timeupdate event, change slider position and time on
controllers ***/

 this.timeUpdate = function(event) {

 var mediaArea=$(event.target);

 var controls=that.controls(mediaArea);

 var currentTime=mediaArea[0].currentTime;

 var duration=mediaArea[0].duration;

 var timer=$(controls.find(".timer"));

 if(currentTime>=0)timer.html(that.timeFormat(currentTime));

 if(!mediaArea.hasClass("seeking")){

 var seekSlider=$(controls.find(".seek"));
 /*** some players (like safari) don't have duration when a
player is initialized, this verify duration and assigned again to max
property on slider ***/

 if(seekSlider.slider("option","max")==0){

 var newDuration=mediaArea[0].duration;

 newDuration=newDuration?newDuration:0;

 seekSlider.slider("option","max", newDuration);

 }

 seekSlider.slider("value", currentTime);
 }

 };

 /*** change play button when reproduction ends ***/

 this.endReproduction = function(event) {

 var mediaArea=$(event.target);

 $(that.controls(mediaArea)).find(".play-button").
removeClass("playing");
 };
})();

www.ebookee.org

http://www.ebookee.org/

The App: Trailers via HTML5 Video

[168]

As a result we have a video player for multiple platforms:

Possible improvements
At this point we have a fully functional player, but we can add more improvements
in the future. An interesting functionality to add is a buffering notification. To
achieve this, you will need to listen to the loadstart event to recognize the
start of loading of a video, waiting and stalled (depending on the browser:
http://www.longtailvideo.com/html5/buffering/) to detect a stop in the
reproduction because of buffering, and finally canplay and canplaythrough
to recognize the end of buffering.

On loadstart, waiting, and stalled a buffering notification should be shown and
on canplay and canplaythrough that notification should be hidden.

Still not perfect
The HTML5 video specification is still in progress. Major inconsistencies exist
because of multiple implementation decisions across browsers and platforms
requiring different encodings. Nevertheless, it is a standard way of supporting
video without plugins.

www.ebookee.org

http://www.ebookee.org/

Chapter 6

[169]

Introducing HTML5 audio
The HTML5 audio specification—much like HTML5 video—is still in development,
and there is no audio format supported across all browsers. Motives for this are the
same ones that have been impeding standardized support of HTML5 video as you
can see in the following table:

Browser Ogg Vorbis WAV PCM MP3 AAC
Internet
Explorer

No No 9 9

Mozilla Firefox 3.5 3.5 No No
Google Chrome 6 6 6 6
Safari Manual install 5 5 5
Opera 10.6 10.6 No No

Implementing an audio player
MovieNow needs an audio podcast player. For that, we are going to use the
HTML5 audio tag.

The audio tag behaves more or less the same as the video tag:

<audio>
 <source src="http://www.w3schools.com/html5/horse.ogg" type="audio/
ogg" />
 <source src="http://www.w3schools.com/html5/horse.mp3" type="audio/
mp3" />
 <p>Audio not supported.</p>
</audio>

Like the video tag, the audio tag allows you to specify the
src attribute directly inside of it.

To test, we will be using a sound effect audio from http://www.w3schools.com/:

•	 http://www.w3schools.com/html5/horse.ogg for Firefox, Google
Chrome, and Opera

•	 http://www.w3schools.com/html5/horse.mp3 for Internet Explorer,
Google Chrome, Safari, and Safari iOS

We will create a podcast.html file and import the same libraries as trailer.html.

www.ebookee.org

http://www.ebookee.org/

The App: Trailers via HTML5 Video

[170]

Custom controllers
Our media player is generic enough to use the same HTML structure for audio.
We only need to replace the video tag with the audio tag, assign the media class
to audio tag, and remove the full screen button:

<div class="media-container no-fullscreen">
 <div>
 <div class="media-area">
 <audio class="media">
 <source src="http://www.w3schools.com/html5/horse.ogg"
type="audio/ogg" />

 <source src="http://www.w3schools.com/html5/horse.mp3"
type="audio/mp3" />

 <p>Audio not supported.</p>
 </audio>
 </div>
 <div class="controls">
 <div class="play-button"></div>
 <div class="seek"></div>
 <div class="volume-container">
 <div class="volume-slider-container">
 <div class="volume-slider"></div>
 </div>
 <div class="volume-button"></div>
 </div>
 <div class="timer">00:00</div>
 </div>
 </div>
</div>

Styling
One last adjustment is related to the audio tag. Some browsers have the height
attribute defined by default, so we reset it to 0:

audio.media{
 height:0;
}

www.ebookee.org

http://www.ebookee.org/

Chapter 6

[171]

How I learned to stop worrying and
love Flash
The awful truth is that HTML5 video and media capabilities are a new technology
and the browser war makes it even more difficult to adopt these solutions as a
standard for media playback. While Flash requires the installation of a plugin, it is a
reliable technology to reproduce media and stream it across multiple browsers.

While Flash support decreases on mobile devices and video and audio specifications
improve, certainly there will be a future with no Flash media, but for now Flash is, at
worst, a fallback solution for cross-browser compatibility.

Huge media delivery products like YouTube still rely on Flash as the primary
technology. You can decide to use HTML5 as your primary technology and fall back
to Flash if the video and audio tags are not supported or vice versa, but the choice
should be made based on your application's requirements.

Summary
The HTML5 video and audio tags are simple and elegant ways to support media
in your enterprise application, but differences between implementations across
browsers should be taken into account when it is necessary to use them as a solution.
For now, the best solution is to use both solutions and define a primary solution
and a fallback.

The next chapter will focus on the use of another exciting feature of HTML5: canvas.
We will use the canvas tag as a tool to visualize analytics related to movie reviews.

www.ebookee.org

http://www.ebookee.org/

www.ebookee.org

http://www.ebookee.org/

The App: Showing Ratings
via Canvas

Until now, we have seen ways to lay out and draw elements in our enterprise
application using CSS and images. If we need to create complex visualizations
and/or animations based on dynamic data, the use of DOM objects becomes intricate
and its manipulation slow. For that reason, the canvas tag was introduced in the
HTML5 specification. The canvas tag defines a rectangular area where we can draw
anything using its JavaScript API. This chapter introduces the canvas tag for data
visualizations and simple animations.

In this chapter, we will cover:

•	 Charting
•	 Preparing our code
•	 Everything depends on the context (2D and 3D contexts)

Charting
Our current implementation of MovieNow uses a subset of the data provided by
the movielistings.php web service. Some of the data not used includes ratings
from MetaCritic, EditorBoost, and general user ratings (avgMetaCriticRating,
editorBoost, and avgUserRating respectively). MovieNow users would love
to see that information in the form of bar charts. For that, we will use canvas.

Although it is possible to render this information using DOM
objects it can be slower and more restrictive.

www.ebookee.org

http://www.ebookee.org/

The App: Showing Ratings via Canvas

[174]

Preparing our code
We need to add a new interaction to show the ratings chart with a click. Let us
remove our current on-click interaction:

$("#movies-near-me li").click(function(){
 $(this).toggleClass("open")
});

The new interaction will include two buttons: one to show the movie description and
the other to show the ratings chart. Inside the img folder, you will find an options.
png image sprite. It has icons for both information and charts.

Using the details-button and charting-button classes, let us add some styles
to styles.css. Each button will be 45 px x 45 px, using absolute positioning to place
it in the bottom-right corner:

.details-button,.charting-button{
 width:45px;
 height:45px;
 cursor:pointer;
 position:absolute;
 bottom:10px;
 right:0;
 background:none;
 border:none;
 background-image:url(../img/options.png)
}

Place the details button to the left-hand side of the charting button:

.details-button{
 right:45px;
}

Set the correct image for the charting button:

.charting-button{
 background-position:-45px 0;
}

www.ebookee.org

http://www.ebookee.org/

Chapter 7

[175]

In the displayShowtimes function of movienow.geolocation.js, we will need to
change the HTML structure to add our new buttons:

<input type="button" class="charting-button" />
<input type="button" class="details-button" />

We will also place our chart container with its canvas. At this point, we are going
to use the HTML5 custom data attribute – data-feed, to store information about
ratings in each canvas:

<section class="charting">
 <h3 itemprop="name">movie.title</h3>

 <p><canvas data-feed= "MetaCritic:movie.avgMetaCriticRating,EditorBo
ost:movie.editorBoost,User Rating:movie.avgUserRating"></canvas></p>
</section>

HTML5 custom data attributes allow the embedding of metadata
on HTML elements. Your attribute name must have a prefix,
data-, followed at least by one character string; in our case we
use the word feed so our attribute name is data-feed. It does
not allow uppercase and the value is a string.

Putting it together, we get:

for (var item in movies.items) {
 movie = movies.items[item];
 var movieDesc=(movie.synopsis &&movie.synopsis.length>200)?movie.
synopsis.substr(0,200)+"...": movie.synopsis;
 var movieHTML='<li itemscope itemtype="http://schema.org/Movie">';
 movieHTML+='<img src="'+movie.poster+'" alt="'+movie.title+'"
width="120" />';
 movieHTML+='<section class="main-info">';
 movieHTML+='<input type="button" class="charting-button" />';
 movieHTML+='<input type="button" class="details-button" />';

 movieHTML+='<h3 itemprop="name">'+movie.title+'</h3>';

 movieHTML+='<p class="details genre" itemprop="genre">'+Array(movie.
genre).join(', ')+'</p>';

 movieHTML+='<p class="details">'+movie.mpaaRating+'</p>';
 movieHTML+='<p class="theater">'+movie.theater.title+" "+movie.
theater.address+'</p>';

www.ebookee.org

http://www.ebookee.org/

The App: Showing Ratings via Canvas

[176]

 movieHTML+='<p class="actors">'+Array(movie.selectedStar).join(',
')+'</p>';
 movieHTML+='</section>';

 movieHTML+='<section class="description">';

 movieHTML+='<h3 itemprop="name">'+movie.title+'</h3>';

 movieHTML+='<p>'+movieDesc+'</p>';
 movieHTML+='</section>';
 movieHTML+='<section class="charting">';
 movieHTML+='<h3 itemprop="name">'+movie.title+'</h3>';
 movieHTML+='<p><canvas data-feed= "MetaCritic:'+movie.avgMetaCri
ticRating+",EditorBoost:"+movie.editorBoost+",User Rating:"+movie.
avgUserRating+'"></canvas></p>';
 movieHTML+='</section>';
 movieHTML+='';
 html+=movieHTML;
}

Add some spacing before the charting elements in styles.css:

.charting canvas{
 margin-top:10px;
}

To hide and show the charting and description areas, we are going to use the
desc class. If the desc class is applied to the li tag, we will hide charting and
show description. Otherwise, we hide description and show charting:

#movies-near-me li.desc section.description, #movies-near-me li
section.charting{
 display:block;
}
#movies-near-me li section.description, #movies-near-me li.desc
section.charting{
 display:none;
}

Back to movienow.geolocation.js, we define methods to show chart (showCharts)
and show details (showDetails). For showCharts, we will use jQuery's chaining
capability. $(event.target) if the button is clicked, so we go two levels up using
parent(); remove the desc class from the current object (li), add the open class,
and find the first canvas element:

$(event.target)
 .parent()

www.ebookee.org

http://www.ebookee.org/

Chapter 7

[177]

 .parent()
 .removeClass("desc")
 .addClass("open")
 .find("canvas")[0];

jQuery allows for the concatenation of method calls applying
each method to the result of the previous one. This improves
performance but sometimes goes against readability.

We are going to create a function called charts to draw each canvas, this function
will take the canvas object as a parameter. Our final method should look like
the following:

this.showCharts = function(event) {
 that.charts(
 $(event.target)
 .parent()
 .parent()
 .removeClass("desc")
 .addClass("open")
 .find("canvas")[0]
);
};

Apply the same train of thought to show details:

this.showDetails = function(event) {

 $(event.target)
 .parent()
 .parent()
 .addClass("desc")
 .addClass("open");
};

Add event handlers for a click to open and close:

$("#movies-near-me li .details-button").click(that.showDetails);
$("#movies-near-me li .description, #movies-near-me li .charting").
click(function(){
 $(this)
 .parent()
 .removeClass("open")
});	
$("#movies-near-me li .charting-button").click(that.showCharts);

www.ebookee.org

http://www.ebookee.org/

The App: Showing Ratings via Canvas

[178]

Now we create movienow.charts.js and add the charts method:

var movienow = movienow || {};
movienow.charts = (function(){
 var that = this;
 this.charts = function(canvas){
 that.drawBarChart(canvas);
 };
 this.drawBarChart = function(canvas) {
 }
})();

Notice that the charts method calls the drawBarChart method. We use this
construct to change the drawing method later.

Remember to include movienow.charts.js in index.html:

<script src="js/ios-orientationchange-fix.js"></script>
<script src="js/jquery-1.8.0.min.js"></script>
<script src="js/jquery.xdomainajax.js"></script>

<script src="js/movienow.charts.js"></script>

<script src="js/movienow.geolocation.js"></script>

<script src="js/movienow.js"></script>

Everything depends on the context
Canvas provides APIs to draw in two or three dimensions, where supported. Canvas
2D has wider support than Canvas 3D; the latter is generally not supported on any
mobile browser.

You can define what API to use by getting the canvas context. Let us suppose that
chart is our canvas object. If you want to draw in two dimensions, you can use:

var context=chart.getContext("2D");

Then, you can use the 2D API to draw, for example, a red square defining its color:

context.fillStyle="#FF0000";

Draw the shape as follows:

context.fillRect(0,0,20,20);

www.ebookee.org

http://www.ebookee.org/

Chapter 7

[179]

For the 3D API, the use is far more complicated. First, it is still not fully supported as
some browsers recognize webgl:

var context=chart.getContext("webgl");

While others use experimental-webgl:

var context=chart.getContext("experimental-webgl");

This is because the webgl specification is still in development. Use of WebGL
requires knowledge of computer graphics and concepts like cameras, lights,
textures, materials, mapping, and so on.

2D context
We are going to create a horizontal bar chart to show MetaCritic, EditorBoost, and
user ratings. The idea is to use green, yellow, and red to indicate how high or low
the rating is.

In the following image, we can see our chart design:

www.ebookee.org

http://www.ebookee.org/

The App: Showing Ratings via Canvas

[180]

Based on the movienow.charts.js structure we have established, let us write the
drawBarChart method. As we do not want to redraw our canvas every time we
call this method, we are going to use the painted class as a flag to determine if the
canvas is already drawn.

We can then save canvas as a jQuery object:

var myCanvas=$(canvas);

Then, we can verify if it has the painted class:

if(!myCanvas.hasClass("painted")){
 //DRAW HERE
 myCanvas.addClass("painted");
}

Inside our conditional, we split data-feed that contains rating information in order
to iterate over it, building a bar for each rating category:

var values=myCanvas.attr("data-feed").split(",");

We then get the 2D context:

var context=canvas.getContext("2d");

An overview of the Canvas 2D Drawing API
Let us go over the most useful methods of Canvas in a 2D context:

Styles
The methods used for setting styles in Canvas 2D API are explained as follows:

•	 context.strokeStyle(value): This receives a string containing a CSS
color of the stroke; if no parameter is passed, it returns the current style
for stroking shapes.

•	 context.fillStyle(value): It receives a string with the CSS color for
filling shapes; if no parameter is passed, it returns the current fill style.

strokeStyle and fillStyle can receive
CanvasGradient or CanvasPattern as a parameter,
allowing you to draw gradients and patterns. For more
information about how to create gradients and patterns,
you can check out the canvas 2D API specification:
http://dev.w3.org/2006/canvas-api/canvas-
2d-api.html.

www.ebookee.org

http://www.ebookee.org/

Chapter 7

[181]

•	 context.lineWidth(value): It defines the width of the lines using pixels.
It only accepts positive values; if no value is passed, it acts like a getter and
returns the current line width.

•	 context.lineCap(value): It sets the style of the end (or cap) of lines.
Possible values are butt, round, and square. If no value is passed, it
returns the current line cap.

•	 context.lineJoin(value): It sets the style of the connection of lines.
Possible values are bevel, round, and miter. If no value is passed, it
returns the current line joint style.

Font styles
The methods used for setting font styles in canvas 2D API are explained as follows:

•	 context.font(value): It defines the style of the fonts using a string with
CSS syntax. If no value is passed, it returns the current font style.

•	 context.fillText(text,x,y[, maxWidth]): It draws text. It receives a
text string with the information to draw x and y coordinates in pixels and
maxWidth that defines the maximum size in pixels for the container's width,
which is optional.

•	 context.strokeText(text,x,y[, maxWidth]): It behaves like fillText
but draws only the stroke of the text.

Drawing simple shapes
The methods used for drawing simple shapes in the Canvas 2D API are as follows:

•	 context.clearRect(x, y, w, h): It defines a rectangle with coordinates
x and y, width w, and height h, and clears all pixels inside the area defined.
Values are in pixels.

•	 context.fillRect(x, y, w, h): It draws a rectangle with coordinates x
and y, width w and height h using the predefined fillStyle.

•	 context.strokeRect(x, y, w, h): It draws the stroke of a rectangle with
coordinates x and y, width w, and height h using the predefined strokeStyle.

Drawing complex shapes
To create more complex shapes, Canvas 2D API allows you to define paths and
subpaths. A path is a collection of subpaths while a subpath is a list of points
connected by lines or curves.

The current project does not require complex shapes, but it is good to know
the methods that allow you to draw curves and lines making it possible to draw
any figure.

www.ebookee.org

http://www.ebookee.org/

The App: Showing Ratings via Canvas

[182]

We need to be aware that our context always contains a current path, and it is not
possible to have more than one.

•	 context.beginPath(): It resets the current path
•	 context.closePath(): It closes the current path and creates a new one with

a first point that uses the same coordinates as the last subpath point
•	 context.moveTo(x, y): It creates a new subpath with coordinates x and y
•	 context.lineTo(x, y): It creates a line between the current point and a

new point with coordinates x and y adding the latest to the current subpath
•	 context.quadraticCurveTo(cpx, cpy, x, y): It creates a quadratic curve

between the current point and a new point with coordinates x and y using a
control point, defined with coordinates cpx on the x axis, and cpy on the y axis

•	 context.bezierCurveTo(cp1x, cp1y, cp2x, cp2y, x, y): It creates a
Bezier curve between the current point and a new point with coordinates x
and y using two control points cp1(cp1x, cp1y) and cp2 (cp2x, cp2y)

•	 context.arcTo(x1, y2, x2, y2, radius): It connects the current point
with a new point with coordinates x1 and y1, then creates a new point with
coordinates x2 and y2 joined with the previous one by an arc with radius
defined by the parameter radius

•	 context.rect(x, y, w, h): It adds a rectangle with coordinates x and y,
width w, and height h to the list of subpaths

•	 context.fill(): It applies the current fill style to fill the subpaths
•	 context.stroke(): It applies the current stroke style to create stroke lines

for the subpaths
•	 context.isPointInPath(x, y): It returns true if the point defined by

coordinates x and y is in the current path and false otherwise

There are other methods that can be useful for more complicated drawings
and animations; you can look at the canvas specification here: http://dev.
w3.org/2006/canvas-api/canvas-2d-api.html.

Drawing charts
First, let us define the text style for that context and a variable to count the current
bar index (in case not all movies have the same number of rating categories):

context.font = "bold 14px sans-serif";
var index=0;

www.ebookee.org

http://www.ebookee.org/

Chapter 7

[183]

Iterate over rating categories and get the current value:

for(var i=0; i<values.length; i++){
 var info=values[i].split(":");
 var val=info[1];
}

We draw (only if the value is bigger than 0) first a gray bar (#292929)
that defines a width of 290 px and a height of 26 px. Using the syntax
fillRect(x,y,width,height), notice that we use 36 to give 10 pixels
of separation between bars:

 var pos=index*36;
 context.fillStyle="#292929";
 context.fillRect(0,pos,290,26);

The canvas origin is positioned in the upper-left corner of
the canvas DOM object. Positive values go below origin and
to the right-hand side.

We can then draw our color bar. For that, we define a getChartColor method that
returns different colors depending on the rating value using green for higher ones,
yellow for mediums, and red for lowest:

this.getChartColor = function(val){
 var result="";
 if(val<40){
 result="#FF0066";
 }else{
 if(val<80){
 result="#FFCC33";
 }else{
 result="#66CC33";
 }
 }
 return result;
};

Using our getChartColor method and current rating value val, we can set
the shape:

context.fillStyle=that.getChartColor(val);
context.fillRect(0,pos,val*2.9,26);

www.ebookee.org

http://www.ebookee.org/

The App: Showing Ratings via Canvas

[184]

To draw the rating category title, we change fill style to a transparent white, and then
we use fillText with syntax fillText(text, x,y):

context.fillStyle = "rgba(255, 255, 255, .9)";
context.fillText(info[0]+" "+val+"%", 10, pos+18);
index++;

Notice that we can use hexadecimal, RGB, or RGBA colors
to define fillStyle.

Finally, we write a validation such that if there is no data we show a message that
says No Data Available:

 if(index==0){
 context.fillStyle = "#FFFFFF";
 context.fillText("No Data Available", 40, 50);
 }

Wrap it all together:

this.drawBarChart = function(canvas) {
 var myCanvas=$(canvas);
 if(!myCanvas.hasClass("painted")){
 var values=myCanvas.attr("data-feed").split(",");
 var context=canvas.getContext("2d");
 context.font = "bold 14px sans-serif";
 var index=0;
 for(var i=0; i<values.length; i++){
 var info=values[i].split(":");
 var val=info[1];
 if(val>0){
 var pos=index*36;
 context.fillStyle="#292929";
 context.fillRect(0,pos,290,26);
 context.fillStyle=that.getChartColor(val);
 context.fillRect(0,pos,val*2.9,26);
 context.fillStyle = "rgba(255, 255, 255, .9)";
 context.fillText(info[0]+" "+val+"%", 10, pos+18);
 index++;
 }
 }
 if(index==0){
 context.fillStyle = "#FFFFFF";
 context.fillText("No Data Available", 40, 50);

www.ebookee.org

http://www.ebookee.org/

Chapter 7

[185]

 }
 myCanvas.addClass("painted");
 }

};

In this example, we do not need to clear our canvas area because we are not
animating or changing information after our first draw. However, if we do require
redrawing, we can use:

context.clearRect(0, 0, canvas.width, canvas.height);

Canvas 2D context provides a procedural approach to
drawing—creating bitmap images. If we need to use vectorial
graphics instead of bitmaps it's possible to use Scalable
Vector Graphics (SVG), which provides a declarative
approach using XML. To know more about SVG you can
research here http://www.w3.org/Graphics/SVG/.

The Canvas 2D API is supported in all modern browsers including Internet Explorer
since Version 9.0. As we have shown in Chapter 2, HTML Starter Kit: Useful Tools, it is
still possible to support previous versions of Internet Explorer using ExplorerCanvas
http://code.google.com/p/explorercanvas/downloads/list.

3D context – WebGL and experimental WebGL
Now that we saw a two-dimensional implementation of our chart solution, let us
try to create a three-dimensional version and add some animations to make things
more interesting.

When we think of user experience, a general rule is that less
is more. That means that keeping things simple should make
our application more usable. In this case, we are going to add
animations that are not needed for the sake of learning how
to do it.

In our case we are going to draw bar charts using WebGL and rating categories titles
using DOM objects.

www.ebookee.org

http://www.ebookee.org/

The App: Showing Ratings via Canvas

[186]

The final implementation should look like the following:

Entering a tridimensional world
The WebGL specification is based on the OpenGL for Embedded Systems 2.0
(or OpenGL ES) specification. Unless you are familiar with OpenGL and you
need to work with low level manipulations, it is suggested that you use a library
that abstracts the use of it. Among the advantages are more readable code, less
development time, and better extensibility.

In our case, we selected Three.js, a JavaScript library that simplifies the use of
WebGL using common metaphors used in other tridimensional libraries.

Consider project objectives when you have to decide which
library to use, and think in terms of future improvements
and limitations of that library.

www.ebookee.org

http://www.ebookee.org/

Chapter 7

[187]

Three.js
Three.js is a JavaScript library that abstracts 3D manipulation allowing us to use
simple metaphors like scenes, cameras, objects, and so on. You can download Three.
js from https://github.com/mrdoob/three.js/ and read its documentation at
http://mrdoob.github.com/three.js/docs/50/.

Let us go over some basic concepts:

Scene
The scene is the virtual environment where we can insert objects. Every object must
be in a scene in order to visualize it.

You can create scenes using scene = new THREE.Scene() and add an object to it
using scene.add(object).

Camera
A camera indicates which section of our scene to visualize. Think of it as a movie;
if we want to record a specific place, we need to point our camera at it. Three.js
provides an abstract Camera class for cameras, two basic cameras, and two extra
implementations of cameras.

OrthographicCamera defines an orthographic projection defined by a cube formed
for the constructor parameters:

OrthographicCamera(left, right, top, bottom, near, far)

•	 left – defines left plane using a float that indicates position
•	 right – defines right plane using a float that indicates position
•	 top – defines top plane using a float that indicates position
•	 bottom – defines bottom plane using a float that indicates position
•	 near – defines the plane nearest to the camera or near plane using a float

that indicates position
•	 far – defines the plane farthest to the camera or far plane using a float that

indicates position

PerspectiveCamera defines a perspective projection using field of view, aspect
ratio, near and far values:

PerspectiveCamera(fov, aspect, near, far)

•	 fov – defines the angle that indicates the field of view represented by a float
•	 aspect – defines the camera aspect ratio defined by a float

www.ebookee.org

http://www.ebookee.org/

The App: Showing Ratings via Canvas

[188]

•	 near – as in OrtographicCamera defines near plane using a float
•	 far – as in OrtographicCamera defines far plane using a float

A visual representation of a perspective camera is shown in the following figure:

Material
Materials define a set of properties that describe the appearance of objects.

Texture
Textures define appearance of objects using images (or procedural patterns).

Mesh
Meshes are part of the list of objects than can be added to the scene. You can assign
geometries and materials to a mesh.

Geometry
Geometry is a representation of an object that can be assigned to a mesh. In our case,
we are going to use CubeGeometry to define our bars.

To start, we will download and include three.js in our index.html file:

<script src="js/ios-orientationchange-fix.js"></script>
<script src="js/jquery-1.8.0.min.js"></script>
<script src="js/jquery.xdomainajax.js"></script>
<script src="js/three.js"></script>
<script src="js/movienow.charts.js"></script>
<script src="js/movienow.geolocation.js"></script>
<script src="js/movienow.js"></script>

www.ebookee.org

http://www.ebookee.org/

Chapter 7

[189]

We then add a new parameter to our charts class to specify which rendering we
would like to use:

this.charts = function(canvas, type){
 switch(type){
 case "3DChart":
 that.draw3DChart(canvas);
 break;
 case "barChart":
 default:
 that.drawBarChart(canvas);
 break;
 }
};

We define as default 3DChart in the showCharts method:

this.showCharts = function(event) {
that.charts($(event.target).parent().parent().removeClass("desc").
addClass("open").find("canvas")[0], "3DChart");
};

Now let us write our 3D drawing method draw3DChart. As our previous
two-dimensional drawing method, this one takes our canvas as a parameter:

this.draw3DChart = function(canvas) {
}

As before, we verify if Canvas has the painted class to avoid initializing it again. We
can then verify WebGL support and, if it is not supported, we render our 2D charts:

this.draw3DChart = function(canvas) {
 var myCanvas=$(canvas);
 var myCanvasParent=myCanvas.parent();
 if(!myCanvas.hasClass("painted")){
 var webGlSupport=false;
 try {
 /*** VERIFICATION OF WEBGL SUPPORT ***/
 webGlSupport = !!window.WebGLRenderingContext && !!document.
createElement('canvas').getContext('experimental-webgl');
 }catch(e){}
 if (webGlSupport){
 //DRAW 3D HERE
 }else{
 /** IF NOT WEBGL SUPPORT RENDERS CHART IN 2D ***/

www.ebookee.org

http://www.ebookee.org/

The App: Showing Ratings via Canvas

[190]

 that.drawBarChart(canvas);
 }
 }
};

Inside webGLSupport, we get our ratings data, canvas dimensions, and a variable
to store time for animation:

var data=myCanvas.attr("data-feed");
var values=data.split(",");
var w = myCanvas.width();
var h = myCanvas.height();
var lastTime = 0;

Now we define a three.js renderer using WebGL, which contains our new canvas,
and set its dimensions:

var renderer = new THREE.WebGLRenderer();
renderer.setSize(w, h);

We assign the data attribute and the painted class to the renderer DOM element
(canvas) and replace our old canvas with this one.

var newCanvas=$(renderer.domElement);
newCanvas.attr("data-feed",data);
myCanvas.addClass("painted");
myCanvas.replaceWith(newCanvas);

We implement our camera using field of vision (FOV) 45 degree, aspect ratio based
on canvas dimensions, near of 1 and far of 1000, and we position our camera to 700
on the z axis.

var camera = new THREE.PerspectiveCamera(45, w/h, 1, 1000);
camera.position.z = 700;

Then we define our scene, a bars array to store meshes to be rendered later, an
index as in our 2D example and a labels string to store the DOM object that
will show the titles:

var scene = new THREE.Scene();
var bars=[];
var index=0;
var labels="<div class='chart-labels'>";

www.ebookee.org

http://www.ebookee.org/

Chapter 7

[191]

Iterate over rating categories as our previous example. We get a color for our
current value using getChartColor and replace # with 0x because of the color
notation used:

var mainColor=that.getChartColor(val).replace("#", "0x");

As we will have six faces for each bar, we will have six different materials. Each one
will have its own color, so we define arrays for colors and materials. We fill our
title information in the labels string too:

var colors = [mainColor, mainColor, mainColor, mainColor, mainColor,
mainColor];
var materials = [];
labels+="<div>"+info[0]+"</div>";
for (var n = 0; n < 6; n++) {

 materials.push([
 new THREE.MeshLambertMaterial({
 color: colors[n],
 opacity:0.6,
 transparent: true,
 shading: THREE.FlatShading,
 vertexColors: THREE.VertexColors
 }),
 new THREE.MeshBasicMaterial({
 color: colors[n],
 shading: THREE.FlatShading,
 wireframe: true,
 transparent: true
 })
]);
}

Notice that we can have more than one material assigned. In this case, we use the
following to define a transparent fill for our solids:

THREE.MeshLambertMaterial({
 color: colors[n],
 opacity:0.6,
 transparent:
 true,
 shading: THREE.FlatShading,
 vertexColors: THREE.VertexColors
})

www.ebookee.org

http://www.ebookee.org/

The App: Showing Ratings via Canvas

[192]

The following draws the edges:

new THREE.MeshBasicMaterial({
 color: colors[n],
 shading: THREE.FlatShading,
 wireframe: true,
 transparent: true
})

Each bar is defined as a mesh with geometry. Use the following CubeGeometry syntax:

CubeGeometry(width, height, depth, segmentsWidth, segmentsHeight,
segmentsDepth)

This creates a new CubeGeometry object:

var bar = new THREE.Mesh(new THREE.CubeGeometry(myWidth, 90, 90, 1, 1,
1, materials), new THREE.MeshFaceMaterial());

Animating our geometries
We are going to animate the growing of the bars, so we will scale them on the x axis.

bar.scale.x=.01;

Meshes have their reference points at their centers, so positioning the mesh and
setting the overdraw to manage transparent geometries, we have:

bar.position.y=200-(index*140);
bar.position.x=-500+(myWidth/2)*bar.scale.x;
bar.overdraw = true;

We add the bar to our scene and to our array with the final width that we should
have at the end of our animation:

scene.add(bar);
bars.push({object:bar, width:myWidth});
index++;

So our iteration should look as follows:

for(var i=0; i<values.length; i++){
 var info=values[i].split(":");
 var val=info[1];
 if(val>0){
 var mainColor=that.getChartColor(val).replace("#", "0x");
 var colors = [mainColor, mainColor, mainColor, mainColor,
mainColor, mainColor];
 var materials = [];

www.ebookee.org

http://www.ebookee.org/

Chapter 7

[193]

 labels+="<div>"+info[0]+"</div>";
 for (var n = 0; n < 6; n++) {

 materials.push([
 new THREE.MeshLambertMaterial({
 color: colors[n],
 opacity:0.6,
 transparent: true,
 shading: THREE.FlatShading,
 vertexColors: THREE.VertexColors
 }),
 new THREE.MeshBasicMaterial({
 color: colors[n],
 shading: THREE.FlatShading,
 wireframe: true,
 transparent: true
 })
]);
 }
 var myWidth=val*8;
 var bar = new THREE.Mesh(new THREE.CubeGeometry(myWidth, 90, 90,
1, 1, 1, materials), new THREE.MeshFaceMaterial());
 bar.scale.x=.01;
 bar.position.y=200-(index*140);
 bar.position.x=-500+(myWidth/2)*bar.scale.x;
 bar.overdraw = true;
 scene.add(bar);
 bars.push({object:bar, width:myWidth});
 index++;
 }
}

At this point, we have not rendered anything. We can remedy that by setting the
labels string and appending it:

labels+"</div>";
myCanvasParent.append(labels);

We set a three structure that we will use for our rendering, and then we call our
render method – animate3DChart:

var three = {
 renderer: renderer,
 camera: camera,
 scene: scene,
 bars: bars
};
that.animate3DChart(lastTime, three);

www.ebookee.org

http://www.ebookee.org/

The App: Showing Ratings via Canvas

[194]

Our draw3DChart method looks as follows:

this.draw3DChart = function(canvas) {
 var myCanvas=$(canvas);
 var myCanvasParent=myCanvas.parent();
 if(!myCanvas.hasClass("painted")){
 var webGlSupport=false;
 try {
 /*** VERIFICATION OF WEBGL SUPPORT ***/
 webGlSupport = !!window.WebGLRenderingContext && !!document.
createElement('canvas').getContext('experimental-webgl');
 }catch(e){}
 if (webGlSupport){
 var data=myCanvas.attr("data-feed");
 var values=data.split(",");
 var w = myCanvas.width();
 var h = myCanvas.height();
 var lastTime = 0;
 var renderer = new THREE.WebGLRenderer();
 renderer.setSize(w, h);
 var newCanvas=$(renderer.domElement);
 newCanvas.attr("data-feed",data);
 myCanvas.addClass("painted");
 /*** REPLACES ORIGINAL CANVAS WITH THREE.JS CANVAS ***/
 myCanvas.replaceWith(newCanvas);
 /*** CAMERA DEFINITION ***/
 var camera = new THREE.PerspectiveCamera(45, w/h, 1, 1000);
 camera.position.z = 700;
 /*** SCENE DEFINITION ***/
 var scene = new THREE.Scene();
 var bars=[];
 var index=0;
 var labels="<div class='chart-labels'>";
 for(var i=0; i<values.length; i++){
 var info=values[i].split(":");
 var val=info[1];
 if(val>0){
 var mainColor=that.getChartColor(val).replace("#", "0x");
 var colors = [mainColor, mainColor, mainColor, mainColor,
mainColor, mainColor];
 var materials = [];
 labels+="<div>"+info[0]+"</div>";
 for (var n = 0; n < 6; n++) {
 materials.push([

www.ebookee.org

http://www.ebookee.org/

Chapter 7

[195]

 new THREE.MeshLambertMaterial({
 color: colors[n],
 opacity:0.6,
 transparent: true,
 shading: THREE.FlatShading,
 vertexColors: THREE.VertexColors
 }),
 new THREE.MeshBasicMaterial({
 color: colors[n],
 shading: THREE.FlatShading,
 wireframe: true,
 transparent: true
 })
]);
 }
 var myWidth=val*8;
 var bar = new THREE.Mesh(new THREE.CubeGeometry(myWidth, 90,
90, 1, 1, 1, materials), new THREE.MeshFaceMaterial());
					
 bar.scale.x=.01;
 bar.position.y=200-(index*140);
 bar.position.x=-500+(myWidth/2)*bar.scale.x;
 bar.overdraw = true;
 scene.add(bar);
 bars.push({object:bar, width:myWidth});
 index++;
 }
 }
 labels+"</div>";
 myCanvasParent.append(labels);
 /*** SAVE INFORMATION REQUIRED TO RENDER SCENE ***/
 var three = {
 renderer: renderer,
 camera: camera,
 scene: scene,
 bars: bars
 };
 that.animate3DChart(lastTime, three);
 }else{
 /** IF NOT WEBGL SUPPORT RENDERS CHART IN 2D ***/
 that.drawBarChart(canvas);
 }
 }
};

www.ebookee.org

http://www.ebookee.org/

The App: Showing Ratings via Canvas

[196]

Finishing up
We create a window.requestAnimFrame method to abstract the definition of our
timeout for animation. Notice that we use 1000/60. This indicates 60 frames per
second (FPS):

window.requestAnimFrame = (function(callback){
 return window.requestAnimationFrame ||
window.webkitRequestAnimationFrame ||
 window.mozRequestAnimationFrame ||
	 window.oRequestAnimationFrame ||
window.msRequestAnimationFrame ||
	 function(callback){
 /* Using 60FPS */
 window.setTimeout(callback, 1000 / 60);
 };
})();

For the animate3DChart method, we simply define a variable to stop our animation
(isReady), and scale and position each bar stopping when we reach 100 percent
scale (in this case 1):

this.animate3DChart = function(lastTime, three){
 var isReady=false;
 for(var i=0; i<three.bars.length; i++){
 if(three.bars[i].object.scale.x<1){
 three.bars[i].object.scale.x+=.03;
 three.bars[i].object.position.x=-500+(three.bars[i].
width/2)*three.bars[i].object.scale.x;
 }
 isReady=(three.bars[i].object.scale.x>=1);
 }
 lastTime = time;
 /*** SCENE RENDER USING THREE.JS ***/
 three.renderer.render(three.scene, three.camera);
 if(!isReady){
 requestAnimFrame(function(){
 that.animate3DChart(lastTime, three);
 });
 }
}

If we want to rotate each bar with no stop, we can define some values to control
the animation:

var angularSpeed = 1.2;
var date = new Date();

www.ebookee.org

http://www.ebookee.org/

Chapter 7

[197]

var time = date.getTime();
var timeDiff = time - lastTime;
var angleChange = angularSpeed * timeDiff * 2 * Math.PI / 1000;

We can then substitute isReady=(three.bars[i].object.scale.x>=1) with
three.bars[i].object.rotation.x += angleChange.

To modify rotation on the x axis, we can add the following:

this.animate3DChart = function(lastTime, three){
 var angularSpeed = 1.2;
 var date = new Date();
 var time = date.getTime();
 var timeDiff = time - lastTime;
 var angleChange = angularSpeed * timeDiff * 2 * Math.PI / 1000;
 var isReady=false;
 for(var i=0; i<three.bars.length; i++){
 if(three.bars[i].object.scale.x<1){
 three.bars[i].object.scale.x+=.03;
 three.bars[i].object.position.x=-500+(three.bars[i].
width/2)*three.bars[i].object.scale.x;
 }
 //isReady=(three.bars[i].object.scale.x>=1);
 three.bars[i].object.rotation.x += angleChange;

 }
 lastTime = time;
 /*** SCENE RENDER USING THREE.JS ***/
 three.renderer.render(three.scene, three.camera);
 if(!isReady){
 requestAnimFrame(function(){
 that.animate3DChart(lastTime, three);
 });
 }
}

The canvas WebGL API is not fully supported by all browsers. You can use the 3D
API for Firefox 4.0+, Chrome, Opera, and Safari since Version 5.1 (on OSX or higher,
but not Safari for iOS devices or Safari for Windows).

www.ebookee.org

http://www.ebookee.org/

The App: Showing Ratings via Canvas

[198]

WebGL is disabled by default on Safari. To enable WebGL on
Safari, click on the Safari menu and select Preferences, then
click on the Advanced tab. At the bottom, check the Show
Develop menu in menu bar checkbox. Open the Develop
menu and then select Enable WebGL.

For Internet Explorer, you can enable WebGL support by installing the Chrome
Frame plugin http://www.google.com/chromeframe. Google Chrome Frame
replaces the rendering mechanism of Internet Explorer with Google Chrome's
versions of the WebKit layout engine and V8 JavaScript engine.

Summary
Although the canvas specification is still in development, we can apply its APIs for
innumerable use cases in our enterprise applications. Charts, scientific visualization,
diagrams, and animated wizards are merely the tip of the iceberg. As developers, we
should always give ample consideration to fallbacks or alternative solutions in the
event something is not supported to ensure proper cross-platform compatibility.

The next chapter will cover drag-and-drop capabilities and event delegation
using HTML5.

www.ebookee.org

http://www.ebookee.org/

The App: Selection UI via
Drag-and-Drop

Even though drag-and-drop functionality has existed since 1999 when Microsoft
implemented it in Internet Explorer 5.0, HTML5 brings it to the fore in a more
standard way. The specification defines a set of APIs, event handlers, and markup
for adding drag-and-drop functionality (DnD) to your enterprise application. To
demonstrate this, we will implement the ability to drag-and-drop movie showtimes
into a staging area in our MovieNow enterprise application to indicate movies the
user is interested in seeing.

The main topics covered in this chapter are:

•	 Adding showtimes
•	 Styling showtimes
•	 What a drag
•	 Drop it

Adding showtimes
We temporarily removed the showtimes from Chapter 4, The App: Getting Movies
via Geoloaction to make room for movie data, synopses, trailers, and ratings. We
will now put showtimes back. To do this, we will modify the displayShowtimes
method in movienow.geolocation.js by inserting a div tag for showtimes and
looping through the array of showtimes contained in the movie object we previously
constructed. Notice how we include a data-movie attribute containing the theater
ID, the movie ID, and the showtime. We do this in order to save some data about the
showtime for later use when we want to know to which movie and which theater the
showtime belongs.

www.ebookee.org

http://www.ebookee.org/

The App: Selection UI via Drag-and-Drop

[200]

We will insert the following code snippet into the displayShowtimes method:

movieHTML+='<div class="showtimes">';
if (typeof movie.showtime == 'string') movie.showtime = Array(movie.
showtime);
for(var i=0; i<movie.showtime.length; i++) {
if (movie.showtime[i]) movieHTML+='<div class="showtime"
draggable="true" title="'+movie.title+' @ '+movie.theater.
title+' ('+movie.theater.address+')" data-movie= "'+movie.theater.
id+':'+movie.id+':'+movie.showtime[i]+'">'+that.formatTime(movie.
showtime[i])+'</div> ';
}
movieHTML+='</div>';

The complete method should look like this:

this.displayShowtimes = function(movies) {
 var movie = null;
 var html = '';
 for (var item in movies.items) {
 movie = movies.items[item];
 var movieDesc='';
 if (movie.synopsis) movieDesc=(movie.synopsis.length>200)?movie.
synopsis.substr(0,200)+"...": movie.synopsis;
 var movieHTML='<li itemscope itemtype="http://schema.org/Movie">';
 movieHTML+='<img src="'+movie.poster+'" alt="'+movie.title+'"
width="120" />';
 movieHTML+='<section class="main-info">';
 movieHTML+='<input type="button" class="charting-button" />';
 movieHTML+='<input type="button" class="details-button" />';
 movieHTML+='<h3 itemprop="name">'+movie.title+'</h3>';
 movieHTML+='<p class="details genre"
itemprop="genre">'+Array(movie.genre).join(', ')+'</p>';
 movieHTML+='<p class="details">'+movie.mpaaRating+'</p>';
 movieHTML+='<p class="theater">'+movie.theater.title+" "+movie.
theater.address+'</p>';
 movieHTML+='<p class="actors">'+Array(movie.selectedStar).join(',
')+'</p>';
 movieHTML+='<div class="showtimes">';
 if (typeof movie.showtime == 'string') movie.showtime =
Array(movie.showtime);
 for(var i=0; i<movie.showtime.length; i++) {
 if (movie.showtime[i]) movieHTML+='<div class="showtime"
draggable="true" title="'+movie.title+' @ '+movie.theater.title+'
('+movie.theater.address+')" data-movie="'+movie.theater.id+':'+movie.
id+':'+movie.showtime[i]+'">'+movie.showtime[i]+'</div> ';
 }

www.ebookee.org

http://www.ebookee.org/

Chapter 8

[201]

 movieHTML+='</div>';
 movieHTML+='</section>';
 movieHTML+='<section class="description">';
 movieHTML+='<h3 itemprop="name">'+movie.title+'</h3>';
 movieHTML+='<p>'+movieDesc+'</p>';
 movieHTML+='</section>';
 movieHTML+='<section class="charting">';
 movieHTML+='<h3 itemprop="name">'+movie.title+'</h3>';
 movieHTML+='<p><canvas data-feed= "MetaCritic:'+movie.avgMetaCr
iticRating+",EditorBoost:"+movie.editorBoost+",User Rating:"+movie.
avgUserRating+'"></canvas></p>';
 movieHTML+='</section>';
 movieHTML+='';
 html+=movieHTML;
 }
 html+= '';
 $('#movies-near-me').html(html);
 $("#movies-near-me li .details-button").click(that.showDetails);
 $("#movies-near-me li .description, #movies-near-me li .charting").
click(function(){$(this).parent().removeClass("open")});
 $("#movies-near-me li .charting-button").click(that.showCharts);
 init();
};

If you preview this change in a web browser, you should see something akin to
the following:

www.ebookee.org

http://www.ebookee.org/

The App: Selection UI via Drag-and-Drop

[202]

Styling showtimes
Of course, the raw showtime data does not look quite the way we traditionally look
at time. We are going to need to format the time to make sure our users understand
the data appropriately.

To accomplish this, we will modify the following line in displayShowtimes:

if (movie.showtime[i]) movieHTML+='<div class="showtime"
title="'+movie.title+' @ '+movie.theater.title+' ('+movie.theater.
address+')" data-movie= "'+movie.theater.id+':'+movie.id+':'+movie.
showtime[i]+'">'+movie.showtime[i]+'</div> ';

We will wrap the display of the showtime with a call to a formatTime method,
which we will write momentarily. Change the previous line so that it looks similar
to the following line:

if (movie.showtime[i]) movieHTML+='<div class="showtime"
title="'+movie.title+' @ '+movie.theater.title+' ('+movie.theater.
address+')" data-movie= "'+movie.theater.id+':'+movie.id+':'+movie.
showtime[i]+'">'+that.formatTime(movie.showtime[i])+'</div> ';

We can then add the following method to format the time. This method takes the
string passed into it, gets the first two characters for the hour, the adjacent two
characters for the minute, and then interprets and modifies the hour data to
change it from a 24-hour clock to a 12-hour clock.

this.formatTime = function(time) {
 var hh = time.substr(0,2);
 var mm = time.substr(2,2);
 var period = 'AM';
 hh = parseInt(hh, 10);
 if (hh >= 12) period = 'PM';
 if (hh > 12) hh -= 12;
 return hh+':'+mm+period;
};

www.ebookee.org

http://www.ebookee.org/

Chapter 8

[203]

The preview for this change should look like the following screenshot:

To make the showtimes a little more presentable, we add the following styles
to styles.css:

.showtimes {
 float:left;
 margin-left:10px;
}
.showtimes .showtime {
 float:left;
 padding:3px;
 margin:0 2px;
 border:1px solid #666;
 -moz-border-radius:5px;
 border-radius:5px;
 cursor:move;
}

We are floating the showtimes to the left-hand side so that they are arranged
horizontally, and adding a border around them to discern them from the other
content. Lastly, we set the cursor to move so that when you hover the mouse over
them, the mouse pointer changes to the move icon for your operating system to
indicate that the showtime is a movable object.

www.ebookee.org

http://www.ebookee.org/

The App: Selection UI via Drag-and-Drop

[204]

Refreshing the preview should show something like the following:

What a drag
The first thing to do to make something draggable in HTML5 is to append the
draggable attribute to the element. This signals to the web browser to create a ghost
image of the element that will appear and follow the mouse pointer when the user
triggers a mouse down event, effectively "dragging" the element, and disappearing
when the mouse button is released.

Change this line in displayShowtimes where we are displaying the showtime:

if (movie.showtime[i]) movieHTML+='<div class="showtime"
title="'+movie.title+' @ '+movie.theater.title+' ('+movie.theater.
address+')" data-movie= "'+movie.theater.id+':'+movie.id+':'+movie.
showtime[i]+'">'+that.formatTime(movie.showtime[i])+'</div> ';

It should now include the draggable="true" attribute:

if (movie.showtime[i]) movieHTML+='<div class="showtime"
draggable="true" title="'+movie.title+' @ '+movie.theater.
title+' ('+movie.theater.address+')" data-movie= "'+movie.theater.
id+':'+movie.id+':'+movie.showtime[i]+'">'+that.formatTime(movie.
showtime[i])+'</div> ';

www.ebookee.org

http://www.ebookee.org/

Chapter 8

[205]

Next, add the following CSS style to styles.css.

[draggable=true] {
 -moz-user-select:none;
 -khtml-user-select:none;
 -webkit-user-select:none;
 user-select:none;
 -khtml-user-drag:element;
 -webkit-user-drag:element;
}

The prefix -khtml is for old versions of Safari.

Because the default behavior on browsers when a user clicks and drags is selection of
text highlighting we need to override this behavior. The styles given previously are
shorthands for different browsers to prevent this behavior.

For Internet Explorer, we will need a JavaScript solution to
override the default selection behavior for dragging since
there is no equivalent. We will cover this when implementing
the JavaScript for the drag-and-drop behavior.

Finally, we will need some JavaScript to handle the events triggered when dragging.
To get started, we will need to create a new JavaScript file. We will call it movienow.
draganddrop.js and place it in the js folder. We will also need to add a reference to
this new file in index.html. Add the following above the closing body tag:

<script src="js/movienow.draganddrop.js"></script>

The script tags in index.html should look similar to the following code snippet:

	 <script src="js/ios-orientationchange-fix.js"></script>
	 <script src="js/jquery-1.8.0.min.js"></script>
	 <script src="js/jquery.xdomainajax.js"></script>
	 <script src="js/three.js"></script>
	 <script src="js/movienow.draganddrop.js"></script>
	 <script src="js/movienow.charts.js"></script>
	 <script src="js/movienow.geolocation.js"></script>
	 <script src="js/movienow.js"></script>
</body>

www.ebookee.org

http://www.ebookee.org/

The App: Selection UI via Drag-and-Drop

[206]

Handling drag with JavaScript
In movienow.draganddrop.js, we will start by creating a simple object:

var movienow = movienow || {};
movienow.draganddrop = (function(){
 var that = this;
})();

Within that object, we will add an init method to execute when the showtimes are
loaded onto the page. Take a look at the following code:

this.init = function() {
 var dragItems = $('[draggable=true]');
 for (var i=0; i<dragItems.length; i++) {
 $(dragItems[i])[0].addEventListener('dragstart', function(event){
 return false;
 });
 $(dragItems[i])[0].addEventListener('dragend', function(event) {
 return false;
 });
 }
}

The init method uses jQuery to find all draggable elements, that is, elements with
the draggable="true" attribute and value. It then loops the collection of draggable
elements and adds an event listener for the dragstart and dragend events. When a
draggable element is dragged, the dragstart event is triggered. All event listeners in
turn are invoked. In this case, we are simply doing nothing and returning false, but
later on, we will do something a little bit more interesting.

Drag events
dragstart – fires when a draggable element begins to be dragged
drag – fires when the mouse is moved while a draggable element is
being dragged
dragend – fires when a draggable element is dropped (when the user
releases the mouse button)
dragenter – fires whenever a target element has a dragging element
dragged into it
dragover – fires for a target element whenever the mouse moves
while a dragging element is inside it
dragleave – fires whenever a target element has a dragging element
dragged from it
drop – fires whenever a target element has a dragging element
released while inside it

www.ebookee.org

http://www.ebookee.org/

Chapter 8

[207]

Finally, we need to invoke the init method when the movie data loads. In the
displayShowtimes method in movienow.geolocation.js, we will need to end the
following line as the last line of the method:

init();

Before we continue, we need to add the following for the sake of Internet Explorer.
Since Internet Explorer does not have a way of using CSS to override the default
selection behavior on drag, we need to use a JavaScript implementation. In this case,
we handle the selectstart event and indicate to the browser that we are dragging
and dropping when it is triggered:

$(dragItems).bind('selectstart', function() {
	 this.dragDrop(); return false;
});

Our init method should now look like the following:

this.init = function() {
 var dragItems = $('[draggable=true]');
 for (var i=0; i<dragItems.length; i++) {
 $(dragItems[i])[0].addEventListener('dragstart', function(event){
 return false;
 });
 $(dragItems[i])[0].addEventListener('dragend', function(event) {
 return false;
 });
 }
 $(dragItems).bind('selectstart', function() {
 this.dragDrop(); return false;
 });
}

Drop it
Now that we can drag stuff around, let us look at how we drop them and do
something useful when they are dropped. First of all, we will need a place to drop
elements. For showtimes, we will create an area on the right-hand side of the page
for dropping elements. Once elements are dropped there, they will be displayed
above the Top 5 Box Office section.

www.ebookee.org

http://www.ebookee.org/

The App: Selection UI via Drag-and-Drop

[208]

Let us add a couple of div tags within the aside tag in index.html. We will call
them dropzone and dropstage. Add the following lines to the beginning of the
aside tag:

<div id="dropzone">Drop Here</div>
<div id="dropstage">
 <h2>Selected Times</h2>
</div>

The beginning of the aside tag should look similar to the following code:

<aside>
 <div id="dropzone">Drop Here</div>
 <div id="dropstage">
 <h2>Selected Times</h2>
 </div>
 <h2>Top 5 Box Office</h2>

Now that we have a place to drop elements and a place to stage elements once they
have been dropped, let us focus on dropzone. This is the area in which we will drop
elements. Add the following style to styles.css:

#dropzone {
 border:1px solid #ffb73d;
 width:198px;
 height:auto;
 min-height:100%;
 text-align:center;
 z-index:2;
 position:absolute;
 margin-top:-28px;
 padding-top:200px;
 background: rgb(215, 215, 0);
 background: rgba(255, 215, 0, 0.5);
 filter:progid:DXImageTransform.Microsoft.gradient(startColorstr=#80F
FD700, endColorstr=#80FFD700);
 -ms-filter: "progid:DXImageTransform.Microsoft.gradient(startColorst
r=#80FFD700, endColorstr=#80FFD700)";
}

Notice that filter:progid and progid are Internet
Explorer specific.

www.ebookee.org

http://www.ebookee.org/

Chapter 8

[209]

This should add a yellow box that overlays the right-hand side. Your preview should
look something like the following screenshot:

Toggling the drop zone
Let us now revisit movienow.draganddrop.js. Remember that we added event
listeners for when a drag is started and when a drag is ended. Let us use this
to hide and show the drop zone when dragging.

Add the following to the dragstart event listener:

$('#dropzone').show();

Add the following to the dragend event listener:

$('#dropzone').hide();

The event listeners should look similar to the following code snippet:

$(dragItems[i])[0].addEventListener('dragstart', function(event){
 $('#dropzone').show();
 return false;
});

www.ebookee.org

http://www.ebookee.org/

The App: Selection UI via Drag-and-Drop

[210]

$(dragItems[i])[0].addEventListener('dragend', function(event) {
 $('#dropzone').hide();
 return false;
});

Set the drop zone to be hidden by default, adding the following line to the
#dropzone style:

display:none;

At this point, when you preview, the drop zone should only appear when you are
dragging a showtime.

Transferring some data
We are starting to understand the mechanics of dragging-and-dropping. However,
in order to make our dragging functionality more interesting, we will need to attach
some data to our draggable elements so that once dropped, we have something
interesting to show. For the sake of simplicity, let us transfer the element itself. To do
this, we set the dataTransfer property of the event object. The event object allows
us to track events on the page and manage data about them. It is an argument for all
event listeners.

Add the following line to the dragstart event listener:

event.dataTransfer.setData('Text', this.outerHTML);

The dragstart event listener should look similar to the following code:

$(dragItems[i])[0].addEventListener('dragstart', function(event){
 $('#dropzone').show();
 event.dataTransfer.setData('Text', this.outerHTML);
 return false;
});

We will then need to add some event listeners to the drop zone so that when an
element is dropped upon it, we can have it do something interesting. In this case,
we will display it on the drop stage.

Add the following to the init method in movienow.draganddrop.js:

$('#dropzone')[0].addEventListener('drop', function(event) {0event.
stopPropagation();
 if (event.preventDefault) event.preventDefault();
 $('#dropstage').append(event.dataTransfer.getData('Text')).show();
 return false;

www.ebookee.org

http://www.ebookee.org/

Chapter 8

[211]

});
$('#dropzone')[0].addEventListener('dragover', function(event) {
 if (event.preventDefault) event.preventDefault();
 return false;
});
$('#dropzone')[0].addEventListener('dragenter', function(event) {
 if (event.preventDefault) event.preventDefault();
 return false;
});

The drop event is central. This is where we handle what happens when an element
is dropped. Notice that we take the data stored on dragstart and append it to the
div tag of dropstage. We must also stop propagation, prevent default behavior, and
return false on the drop, dragover, and dragenter events to prevent the browser
from browsing to the element.

Displaying the results
Now that we have the scaffolding for dragging worked out, we will want to display
the movie data along with the showtime and style everything for better presentation.
We will do this first of all by adding some more data to the event object.

Add the following lines to the dragstart event listener so that we can capture the
movie title and theater title as well as the time data as separate datapoints:

event.dataTransfer.setData('Title', $(this)[0].title);
event.dataTransfer.setData('Time', $(this).html());

The event listener should look similar to the following code snippet:

$(dragItems[i])[0].addEventListener('dragstart', function(event){
 $('#dropzone').show();
 event.dataTransfer.setData('Text', this.outerHTML);
 event.dataTransfer.setData('Title', $(this)[0].title);
 event.dataTransfer.setData('Time', $(this).html());
 return false;
});

In the drop event listener for the drop zone, modify the following line:

$('#dropstage').append(event.dataTransfer.getData('Text')).show();

www.ebookee.org

http://www.ebookee.org/

The App: Selection UI via Drag-and-Drop

[212]

We will need to build some HTML to insert into the DOM object. Take the Title and
Time datapoints and display them accordingly:

var html='<div class="selected-time">';
html+='<div class="title">'+event.dataTransfer.getData('Title')+'</
div>';
html+='<div class="time">'+event.dataTransfer.getData('Time')+'</
div>';
html+='</div>';
$('#dropstage').append(html).show();

The entire drop event listener should look similar to the following code snippet:

$('#dropzone')[0].addEventListener('drop', function(event) {
 if (event.stopPropagation) event.stopPropagation();
 if (event.preventDefault) event.preventDefault();
 var html='<div class="selected-time">';
 html+='<div class="title">'+event.dataTransfer.getData('Title')+'</
div>';
 html+='<div class="time">'+event.dataTransfer.getData('Time')+'</
div>';
 html+='</div>';
 $('#dropstage').append(html).show();
 return false;
});

Lastly, we will need to style the drop stage so as showtimes are dropped onto it, they
look presentable. Add the following to styles.css to display the selected time's
data and the drop stage appropriately:

.selected-time {
 float:left;
 margin-bottom:10px;
}
.selected-time .title {
 font-size:.8em;
 padding:0 10px;
}
.selected-time .time {
 font-size:.9em;
 clear:both;
 float:right;
 padding-right:10px;
}
#dropstage {

www.ebookee.org

http://www.ebookee.org/

Chapter 8

[213]

 display:none;
 float:left;
 width:100%;
 padding-bottom: 5px;
 margin-bottom: 5px;
}
#dropstage h2 {
 border:0;
}

Notice that display is set to none on #dropstage. The drop event listener actually
shows this section so that it only displays when there are dropped items. We will
also need to tweak the style for aside h2 so that the Top 5 Box Office text does not
wrap. To do this, simply add the following code:

clear:both;

Now that the drop stage is styled, we should see our showtimes displayed
appropriately when we drop them on the drop zone. Try it out.

www.ebookee.org

http://www.ebookee.org/

The App: Selection UI via Drag-and-Drop

[214]

Summary
In this chapter, we walked through how to set items as draggable by marking them
as such. We walked through the mechanics of dragging-and-dropping and the events
that go with this orchestration. Furthermore, we walked through how to put all of
this together to achieve some interesting functionality for your HTML5 enterprise
application.

In the next chapter, we will talk about HTML5 forms. We will use them to submit
tweets about specific showtimes to Twitter.

www.ebookee.org

http://www.ebookee.org/

The App: Getting the Word
Out via Twitter

This chapter covers our second example of usage of third-party APIs—using the
Twitter API as an example—and HTML5 form validation capabilities. Twitter
is a social network that allows users to publish and view messages of up to 140
characters. This social network provides a public API that allows developers to do a
variety of things. As an exercise, we are going to add Twitter OAuth authentication
and message posting to MovieNow, introducing HTML5 form validation.

For this chapter, some basic skill on backend technologies is required. You can
review the basics of PHP at the following location: http://php.net/manual/en/
tutorial.php.

Although we use PHP, it is possible to select another solution and its respective
Twitter library (https://dev.twitter.com/docs/twitter-libraries). There
are libraries for Java, .NET, Ruby, and so on.

Through this chapter we will cover:

•	 Registering our application
•	 How to tweet in MovieNow
•	 Authenticating
•	 Posting tweets
•	 New input field types

www.ebookee.org

http://www.ebookee.org/

The App: Getting the Word Out via Twitter

[216]

Registering our application
To use the Twitter API, we need a Twitter account to register our application.
If you do not have a Twitter account, you can register one for free at
http://www.twitter.com.

After registering and logging in, you can go to the Twitter developer page at
https://dev.twitter.com/.

www.ebookee.org

http://www.twitter.com
http://www.twitter.com
http://www.ebookee.org/

Chapter 9

[217]

Click on the Create an app link and enter the Name, Description, and Website
value of your application. Callback URL is the address to which your app will be
redirected after users grant permissions to use their accounts. In this case, you can
redirect to your index page.

After this you only need to accept the terms and conditions, enter the CAPTCHA,
and click on Create your Twitter application.

www.ebookee.org

http://www.ebookee.org/

The App: Getting the Word Out via Twitter

[218]

Now that you have your Twitter application created, you can see its details in the
following page. The most important parameters are Consume key and Consume
secret, they are used to authenticate your app.

You shouldn't expose Consume key and Consume secret to the
client. All sensitive data should be encrypted.

www.ebookee.org

http://www.ebookee.org/

Chapter 9

[219]

By default, Twitter has the Access level as Read only. We can go to the Settings tab,
and set Read and Write in the Application Type section and upload an avatar for
our application in the Application Icon section.

We are ready to start using the Twitter API.

www.ebookee.org

http://www.ebookee.org/

The App: Getting the Word Out via Twitter

[220]

How to tweet in MovieNow?
To tweet using MovieNow, we need two pieces of functionality: Twitter OAuth
authentication and status update (tweet).

The workflow of our example is simple: the user authenticates using a Sign In button
in the upper-right corner of MovieNow, then we show the username and avatar, and
when the user drags a movie to select it (or clicks on iPhone and other drag-disabled
devices), we show a tweet form with movie details, that can be posted by clicking on
the Tweet button.

To simplify our example we are going to use a Twitter-async PHP library that wraps
the Twitter API and provides asynchronous calls: https://github.com/jmathai/
twitter-async.

Jaisen Mathai's Twitter-async documentation can be found at
http://www.jaisenmathai.com/articles/twitter-
async-documentation.html.

Authenticating
Download the Twitter-async library and put it in a lib folder that we will create in
the root of the application directory. We should have:

•	 EpiCurl.php – abstracts the parallel processing using PHP
multi_curl functions

•	 EpiOauth.php – contains basic methods for OAuth authentication
•	 EpiTwitter.php – extends EpiOauth and abstracts the Twitter API

authentication and requests

Additionally, we can create a PHP file called secret.php to store our consume key
and consume secret (you can find them in your Twitter application account page).

<?php
 $consumer_key = "<PLACE YOUR CONSUMER KEY HERE>";
 $consumer_secret = "<PLACE YOUR CONSUMER SECRET KEY HERE>";
?>

www.ebookee.org

http://www.ebookee.org/

Chapter 9

[221]

We need to change our index.html page extension to index.php to add PHP
code. After that we call the PHP session_start method to start a new session
(or resume a previous one if one exists). Then, we import our libraries. Finally, we
can instantiate the EpiTwitter class with our consumer key ($consumer_key) and
consumer secret ($consumer_secret).

<?php
 session_start();
 include 'lib/EpiCurl.php';
 include 'lib/EpiOAuth.php';
 include 'lib/EpiTwitter.php';
 include 'lib/secret.php';
 $twitterObj = new EpiTwitter($consumer_key, $consumer_secret);
?>

$twitterObj has the information needed to start a new Twitter OAuth session or get
user information using the existing one. To show Twitter login or logged information
we are going to have two possible cases in our header:

If user is not logged in and/or application is not authorized:

<header>
 <div class="logo">
 </div>
 <div class="twitter-info">
 <div class='twitter-signin'></div>
 </div>
</header>

If user is logged in:

<header>
 <div class="logo">
 </div>
 <div class="twitter-info">
 <a href='http://www.twitter.com/username' target='_
blank' class='twitter-data'><img src='avatar' width='30'
height='30'/>username
 </div>
</header>

Notice that we added the class logo to differentiate divs
with the MovieNow logo inside our header.

www.ebookee.org

http://www.ebookee.org/

The App: Getting the Word Out via Twitter

[222]

User not logged and/or application not
authorized
When our users are not logged in, we want to show a link to the Twitter login page
and/or authentication page in MovieNow in the upper-right corner.

To do that, we obtain the authorization URL from $twitterObj and create a link
with it:

$url = $twitterObj->getAuthorizationUrl();
echo "<div class='twitter-signin'></div>";

If users access this link and they are already logged into Twitter, they will go directly
to the MovieNow authorization screen:

www.ebookee.org

http://www.ebookee.org/

Chapter 9

[223]

If users are not logged into Twitter, they will see the login screen first.

After logging in, they will see the Twitter MovieNow authorization screen. When the
login/authorization process ends, browsers are redirected to your Callback URL.

www.ebookee.org

http://www.ebookee.org/

The App: Getting the Word Out via Twitter

[224]

Remember that you can change your Callback URL anytime
by going to https://dev.twitter.com/ and changing it
in the Settings tab.

The callback URL will receive oauth_verifier and oauth_token as parameters.
We need to use oauth_token to set the user session information. In session we
are going to store $_SESSION['oauth_token'] and $_SESSION['oauth_token_
secret']. If they are set, then the user is already logged in. If not, we need to use
$_GET['oauth_token'] to set our session information.

First, we verify:

if(isset($_GET['oauth_token']) || (isset($_SESSION['oauth_token']) &&
isset($_SESSION['oauth_token_secret']))){
 if(!isset($_SESSION['oauth_token']) || !isset($_SESSION['oauth_
token_secret'])){
 //SET SESSION HERE
 }

}

Then, to set our session, we use $twitterObj passing $_GET['oauth_token']:

$twitterObj->setToken($_GET['oauth_token']);

We then access the token information to set our session:

$token = $twitterObj->getAccessToken();
$_SESSION['oauth_token']=$token->oauth_token;
$_SESSION['oauth_token_secret']=$token->oauth_token_secret;

Finally, we set our token using oauth_token and oauth_token_secret obtained
from the getAccessToken method:

$twitterObj->setToken($token->oauth_token, $token->oauth_token_
secret);

User logged in
If users are logged in, they would like to see something that informs them that
they are logged in. For that reason, we are going to show their Twitter avatar and
username in the upper-right corner of our header.

www.ebookee.org

http://www.ebookee.org/

Chapter 9

[225]

It is a good practice to show login and user logged
information in the same space in any enterprise application.

Now we only need to get user information, so we can use get_accountVerify_
credentials to get the username and avatar location:

$twitterInfo= $twitterObj->get_accountVerify_credentials();
$username = $twitterInfo->screen_name;
$avatar = $twitterInfo->profile_image_url;

Build a link to the Twitter user account and display the avatar:

echo "<a href='http://www.twitter.com/$username' target='_blank'
class='twitter-data'>
$username";

Wrapping it all together, we have:

<header>
 <div class="logo">
 </div>
 <div class="twitter-info">
 <?php
 if(isset($_GET['oauth_token']) || (isset($_SESSION['oauth_token'])
&& isset($_SESSION['oauth_token_secret']))){
 if(!isset($_SESSION['oauth_token']) || !isset($_SESSION['oauth_
token_secret'])){
 $twitterObj->setToken($_GET['oauth_token']);
 $token = $twitterObj->getAccessToken();
 $_SESSION['oauth_token']=$token->oauth_token;
 $_SESSION['oauth_token_secret']=$token->oauth_token_secret;
 $twitterObj->setToken($token->oauth_token, $token->oauth_
token_secret);
 }else{

www.ebookee.org

http://www.ebookee.org/

The App: Getting the Word Out via Twitter

[226]

 $twitterObj->setToken($_SESSION['oauth_token'],$_
SESSION['oauth_token_secret']);
 }
 $twitterInfo= $twitterObj->get_accountVerify_credentials();
 $username = $twitterInfo->screen_name;
 $avatar = $twitterInfo->profile_image_url;
 echo "<a href='http://www.twitter.com/$username' target='_blank'
class='twitter-data'>
$username";
 }else{
 $url = $twitterObj->getAuthorizationUrl();
 echo "<div class='twitter-signin'></div>";
 }
 ?>
 </div>
</header>

Adding some styles
Now that our login interaction is done, we can add styles in styles.css.

First, we change the div style of header to logo to have another div tag with
different styles inside header. Remember to change this in the Retina Display case
too (@media only screen and (-webkit-min-device-pixel-ratio:2),
only screen and (min-device-pixel-ratio: 2)).

The twitter-info class is our container for Twitter information whether the user
is logged in or not. We set position to absolute to hide the username and show
only the user avatar when devices with smaller screens are used.

header .twitter-info{
 position:absolute;
 top:20px;
 right:0;
}

We can remove the outline from links:
header .twitter-info a{
 outline:none;
}

You can remove all outlines from links using
a{outline:none;}.

www.ebookee.org

http://www.ebookee.org/

Chapter 9

[227]

Add login image and dimensions:

header .twitter-signin{
 width:100px;
 height:36px;
 background:url(../img/twitter-signin.png);
}

Position the user avatar:

header a.twitter-data img{
 position:absolute;
 left:-38px;
}

Set the text style information for the username:

header a.twitter-data{
 line-height:30px;

 color:#fff;
 text-decoration:none;
 font-size:.8em;
 padding-right:10px;
}

Inside the @media only screen and (max-width: 737px) media query we need
to hide the username and show only the Twitter avatar if the user is not logged in.

Hide part of twitter-info block:

header .twitter-info{
 right:-67px;
}

Move the avatar:

header a.twitter-data img{
 left:-88px;
}

Hide the username:

header a.twitter-data span{
 display:none;
}

www.ebookee.org

http://www.ebookee.org/

The App: Getting the Word Out via Twitter

[228]

Now our Twitter login process on devices with smaller screens should look like the
following screenshot:

After you click on the Twitter button at the top, you will be redirected to the Twitter
authentication page (if you are not logged into Twitter, it will redirect you to the
login page first).

www.ebookee.org

http://www.ebookee.org/

Chapter 9

[229]

If you authorize the application, then the next screen will show your Twitter avatar
in the top section of the page.

Posting tweets
Our user is now authenticated. The next step is to allow for tweeting about movies.
In this case, let us use AJAX to call a service that receives a message to tweet as a
tweet parameter.

Service
Let us create a file called tweet.php and store it in the root of our application. Import
the Twitter-async libraries and secret.php configuration file:

include 'lib/EpiCurl.php';
include 'lib/EpiOAuth.php';
include 'lib/EpiTwitter.php';
include 'lib/secret.php';

We are going to return a JSON object indicating whether the tweet was successfully
posted or not. Let us define a variable $result and set default status to ok.

$result = array('status' => 'ok');

We can instantiate EpiTwitter with our application info and verify the session. If no
session exists, set the status to error:

 $twitterObj = new EpiTwitter($consumer_key, $consumer_secret);

 if(isset($_SESSION['oauth_token']) && isset($_SESSION['oauth_token_
secret'])){
 //TWEET
 }else{

 $result["status"]="error";
 }

If the session exists, set the $twitterObj token and verify credentials:

 $twitterObj->setToken($_SESSION['oauth_token'],$_SESSION['oauth_
token_secret']);
	
 $twitterInfo= $twitterObj->get_accountVerify_credentials();

www.ebookee.org

http://www.ebookee.org/

The App: Getting the Word Out via Twitter

[230]

If we have the tweet parameter, we unescape our message and invoke the
post_statusesUpdate API passing our tweet inside status, an indexed
array. We can then save the response in a $temp variable.

$msg = stripcslashes($_REQUEST['tweet']);
$update_status = $twitterObj->post_statusesUpdate(array('status' =>
$msg));
$temp = $update_status->response;

Finally, we validate if $temp contains an error and return $result as JSON:

if($temp["error"])$result["status"]="error";
echo json_encode($result);

Wrapping it all together, we should have:

<?php
 include 'lib/EpiCurl.php';
 include 'lib/EpiOAuth.php';
 include 'lib/EpiTwitter.php';
 include 'lib/secret.php';
 $result = array('status' => 'ok');
 $twitterObj = new EpiTwitter($consumer_key, $consumer_secret);

 if(isset($_SESSION['oauth_token']) && isset($_SESSION['oauth_token_
secret'])){

 $twitterObj->setToken($_SESSION['oauth_token'],$_SESSION['oauth_
token_secret']);

 $twitterInfo= $twitterObj->get_accountVerify_credentials();

 if($_REQUEST['tweet']){
 $msg = stripcslashes($_REQUEST['tweet']);
 $update_status = $twitterObj->post_statusesUpdate(array('status'
=> $msg));

 $temp = $update_status->response;

 }
 }else{

 $result["status"]="error";
 }
 if($temp["error"])$result["status"]="error";
 echo json_encode($result);
?>

www.ebookee.org

http://www.ebookee.org/

Chapter 9

[231]

Applying HTML
We are going to display our tweet form as a modal window with a curtain to obscure
the rest of the application. We will start by adding the code for the tweet form at the
end of the body in index.php. Next, we will set up the curtain to cover our page
(we will style this as black with transparency):

<div class="modal-background-color"></div>

For our modal area, we will create a section:

<section class="modal-background"></section>

For modal-background-color we do not use section
because it doesn't have any semantic information.

We will define the tweet window as a div:

<div class="tweet"></div>

We can then add a bar with title and a close button:
<div class="tweet">
 <div class="tweet-bar">
 <h2>Tweet</h2>
 <div id="close-tweet"></div>
 </div>
</div>

Lastly, we have our tweet form itself. Notice that we set the maxlength attribute of
the textarea to 140 since tweets can be no more than 140 characters.

The maxlength attribute in the textatarea element is not
supported by Internet Explorer 9 or previous versions. This is
because it was not standard for textarea in the HTML 4.01
specification, but it was added later in HTML5.

<form id="twitter">
 <textarea name="tweet" rows="5" id="tweet" title="Tweet Required!"
maxlength="140" required></textarea>
 <div class="char-counter">
 <input type='submit' value='tweet' name='submit' id='tweet-
submit' />
 <div id="count">140</div>
 </div>
</form>

www.ebookee.org

http://www.ebookee.org/

The App: Getting the Word Out via Twitter

[232]

Putting it all together, we have:

<div class="modal-background-color"></div>
<section class="modal-background">
 <div class="tweet">
 <div class="tweet-bar">
 <h2>Tweet</h2>
 <div id="close-tweet"></div>
 </div>
 <form id="twitter">
 <textarea name="tweet" rows="5" id="tweet" title="Tweet
Required!" maxlength="140" required></textarea>
 <div class="char-counter">
 <input type='submit' value='tweet' name='submit' id='tweet-
submit' />
 <div id="count">140</div>

 </div>
 </form>
 </div>
</section>

Notice that we are using the required attribute to indicate that this field can not be
blank. The required attribute is an HTML5 attribute used for form validation. We
are using maxlength as well to limit the number of characters allowed.

<textarea name="tweet" rows="5" id="tweet" title="Tweet Required!"
maxlength="140" required></textarea>

Adding more styles
We have the HTML structure of our tweet window, but we haven't added styles yet.
Our final design should look like the following screenshot:

www.ebookee.org

http://www.ebookee.org/

Chapter 9

[233]

To achieve this we are going to add some styles in styles.css.

1.	 We set modal-background-color to cover our page using fixed positioning
and z-index: 5000. This background should be black with an opacity of
80 percent.
.modal-background-color{
 bottom: 0;
 left: 0;
 right: 0;
 top: 0;
 background-color:#000;
 opacity: 0.8;
 display:none;
 -moz-opacity: 0.8;
 -khtml-opacity: 0.8;
 filter: alpha(opacity=80);
 -ms-filter: "progid:DXImageTransform.Microsoft.
Alpha(Opacity=80)";	
 position: fixed;
 z-index: 5000;
}

Although -ms-filter is being used to give support for
older versions of Internet Explorer, it is a proprietary solution
of Microsoft that does not follow the standard.

www.ebookee.org

http://www.ebookee.org/

The App: Getting the Word Out via Twitter

[234]

2.	 We want modal-background to be on top of modal-background-color,
so we use z-index: 5100. Both areas should be hidden by default with
display:none as shown in the following code snippet:
.modal-background{
 bottom: 0;
 left: 0;
 right: 0;
 top: 0;
 display:none;
 position: fixed;
 z-index: 5100;
}

3.	 Our tweet area is white with rounded corners and centered using
margin:110px auto:
.tweet{
 background-color:#fff;
 border-radius:4px 4px;
 -moz-border-radius:4px 4px;
 -webkit-border-radius:4px 4px;
 -o-border-radius:4px 4px;
 width:470px;
 margin:110px auto;
}

4.	 We then float the tweet title left and add some padding:
.tweet h2{
 float:left;
 padding:8px 15px 6px;
}

5.	 For our text area #tweet, we remove the outline, add some padding and
margin, and set rounded corners border style and font style:
#tweet{
 outline:none;
 padding:5px 5px;
 resize:none;
 width:430px;
 margin:15px 15px 8px;
 border-radius:4px 4px 0 0;
 -moz-border-radius:4px 4px 0 0;
 -webkit-border-radius:4px 4px 0 0;
 -o-border-radius:4px 4px 0 0;

www.ebookee.org

http://www.ebookee.org/

Chapter 9

[235]

 border:1px solid #d3d3d3;
 font-size:1em;
 line-height:1.4em;
}

6.	 By default, our submit button #tweet-submit is gray:
#tweet-submit{
 padding:6px 12px;
 background-color:#f6f6f6;
 font-size:.8em;
 border-radius:4px 4px;
 -moz-border-radius:4px 4px;
 -webkit-border-radius:4px 4px;
 -o-border-radius:4px 4px;
 border:1px solid #d3d3d3;
 cursor:pointer;
 color:#888;
 font-weight:bold;
}

7.	 Add an active class to set the style when it is active, coloring our button
with a blue gradient, blue border, and white font:
#tweet-submit.active{
 background:linear-gradient(top, #33BCEF, #019AD2);
 background:-o-linear-gradient(top, #33BCEF, #019AD2);
 background:-moz-linear-gradient(top, #33BCEF, #019AD2);
 background:-webkit-linear-gradient(top, #33BCEF, #019AD2);
 background:-ms-linear-gradient(top, #33BCEF, #019AD2);
 border-color:#057ed0;
 color:#fff;
}

8.	 On hover, make it a little darker:
#tweet-submit.active:hover{
 background:linear-gradient(top, #2DADDC, #0271BF);
 background:-o-linear-gradient(top, #2DADDC, #0271BF);
 background:-moz-linear-gradient(top, #2DADDC, #0271BF);
 background:-webkit-linear-gradient(top, #2DADDC, #0271BF);
 background:-ms-linear-gradient(top, #2DADDC, #0271BF);
}

www.ebookee.org

http://www.ebookee.org/

The App: Getting the Word Out via Twitter

[236]

9.	 Float the character counter and submit button to the right and remove
the outline:
#tweet-submit,#count{
 float:right;
 outline:none;
}

10.	 Set the character counter font style:
#count{
 line-height:30px;
 padding-right:14px;
 color:#999;
 font-size:.9em;
}

11.	 Add the close.png sprite image to #close-tweet button and set its styles:
#close-tweet{
 cursor:pointer;
 border-left:1px solid #ccc;
 width:30px;
 height:30px;
 float:right;
 background-image:url(../img/close.png);
}

12.	 Move the image on hover:
#close-tweet:hover{
 background-color:#E5E5E5;
 background-position:0 -30px;
}

13.	 Add a different style to the bar that contains the title and close button. Notice
that we round off upper-left and right corners:
.tweet-bar{
 border-radius:4px 4px 0 0;
 -moz-border-radius:4px 4px 0 0;
 -webkit-border-radius:4px 4px 0 0;
 -o-border-radius:4px 4px 0 0;
 background-color:#ececec;
 color:#666;
 font-size:.9em;
 border-bottom:1px solid #ccc;
 overflow:hidden;
}

www.ebookee.org

http://www.ebookee.org/

Chapter 9

[237]

14.	 Finally, set height for the area that contains the tweet submit button and
character counter:
.char-counter{
 height:40px;
 padding:0 14px;
}

15.	 For mobile devices, add a different width for the text area and tweet window
using the @media only screen and (max-width: 737px) media query:

.tweet{
 width:300px;
}
#tweet{
 width:258px;
}

Our tweet windows should look like the following screenshot on devices with
smaller screens:

www.ebookee.org

http://www.ebookee.org/

The App: Getting the Word Out via Twitter

[238]

Adding JavaScript interactions
Now we need to add the respective JavaScript to connect the dots. Let us create a
new file movienow.tweet.js in the js folder. We import that file before movienow.
draganddrop.js inside index.php:

<script src="js/ios-orientationchange-fix.js"></script>
<script src="js/jquery-1.8.0.min.js"></script>
<script src="js/jquery.xdomainajax.js"></script>
<script src="js/three.js"></script>
<script src="js/movienow.tweet.js"></script>
<script src="js/movienow.draganddrop.js"></script>
<script src="js/movienow.charts.js"></script>
<script src="js/movienow.geolocation.js"></script>
<script src="js/movienow.js"></script>

As you noticed we are using a bunch of JavaScript
libraries, it is good practice to implement minification
techniques for our JavaScript and CSS to reduce the size
of our files and the number of requests.

Define the main code structure and add a variable twitterReady to verify if the
tweet window is initialized:

var movienow = movienow || {};
movienow.tweet = (function(){
 var that = this;
 var twitterReady = false;
})();

Hide and show functionality will be handled by showTweetArea and hideTweetArea
functions. For showTweetArea, we verify if twitterReady is true; if not we call
initTweet function to set Twitter window events and assign true to twitterReady.

We can assign message (with default text) to the text area and show the tweet
window. If the user is not logged in, we show an alert.

this.showTweetArea = function(title, time) {
 if(!twitterReady){
 that.initTweet();
 twitterReady=true;
 }

www.ebookee.org

http://www.ebookee.org/

Chapter 9

[239]

 if($(".twitter-data").length>0){
 var message = "I'm going to "+title+" "+time;
 $("#tweet").val(message);
 that.updateCount();
 $(".modal-background").css("display", "block");
 $(".modal-background-color").css("display", "block");
 $("html,body").css("overflow","auto");
 }
else{
 alert("Please login in twitter to tweet this");
 }
 };

A more elegant way to show notifications and errors
in our enterprise application is to define custom modal
windows using HTML and style them with CSS.
Moreover, it is possible to use template engines (like
Mustache, found at http://mustache.github.com)
to implement this solution.

Notice that we set $("html,body").css("overflow","auto") to hide the browser
scroll bar.

The hideTweetArea method hides the tweet window and restores the browser
scroll bar:

this.hideTweetArea = function() {
 $(".modal-background").css("display", "none");
 $(".modal-background-color").css("display", "none");

 $("html,body").css("overflow","hidden");
}

To update the character counter, we add an updateCount method. We extract the
#tweet text area message and validate its length against 140 characters. We add the
active class to our submit button only when it is possible to tweet.

this.updateCount = function(){
 var info=$("#tweet").val();

 var count= 140 - info.length;
 $('#count').html(count);

 if(count===140||count<0){

 $('#tweet-submit').removeClass("active");
 }else{

www.ebookee.org

http://www.ebookee.org/

The App: Getting the Word Out via Twitter

[240]

 $('#tweet-submit').addClass("active");
 }
};

A native alternative to implement this is the use of the attribute disabled in our
input field instead of adding and removing the active class.

Our initialization method, initTweet, adds the necessary events:

this.initTweet = function() {
 $("#tweet").keyup(that.updateCount);

 $("#twitter").submit(that.tweet);

 $("#close-tweet").click(that.hideTweetArea);

};

Finally, we create a method to call our PHP service:

this.tweet = function(event) {
 if($("#twitter")[0].checkValidity()){

 $.ajax({
 url: 'tweet.php',

 data: $("#twitter").serialize(),

 success: function(info){

 var data = that.objectifyJSON(info);

 if(data.status!="ok"){

 alert("Ops! There was an error sending your tweet, please
try again.");
 }else{

 that.hideTweetArea();

 }
 }
 });
 }
 return false;
};

The checkValidity method is an HTML5 JavaScript function that allows us to
verify whether the fields are valid. In our case, since the text area is required, the
validation is that it is not empty.

www.ebookee.org

http://www.ebookee.org/

Chapter 9

[241]

Since we are using AJAX, we add return false at the end to avoid a page refresh
on submit.

Typically, we would need to extract all inputs from the form
and construct a data parameter for our AJAX call. There is a
useful function in jQuery called serialize that constructs
this for us.

Put it all together and we should have:

var movienow = movienow || {};
movienow.tweet = (function(){
 var that = this;
 var twitterReady = false;
 this.initTweet = function() {
 $("#tweet").keyup(that.updateCount);

 $("#twitter").submit(that.tweet);

 $("#close-tweet").click(that.hideTweetArea);

 };
 this.tweet = function(event) {

 if($("#twitter")[0].checkValidity()){
 $.ajax({
 url: 'tweet.php',

 data: $("#twitter").serialize(),

 success: function(info){

 var data = that.objectifyJSON(info);

 if(data.status!="ok"){

 alert("Ops! There was an error sending your tweet, please
try again.");
 }else{

 that.hideTweetArea();

 }
 }
 });
 }
 return false;
 };
 this.updateCount = function(){

www.ebookee.org

http://www.ebookee.org/

The App: Getting the Word Out via Twitter

[242]

 var info=$("#tweet").val();

 var count= 140 - info.length;
 $('#count').html(count);

 if(count==140||count<0){

 $('#tweet-submit').removeClass("active");
 }else{
 $('#tweet-submit').addClass("active");
 }
 };
 this.showTweetArea = function(title, time) {

 if(!twitterReady){
 that.initTweet();

 twitterReady=true;
 }
 if($(".twitter-data").length>0){
 var message = "I'm going to "+title+" "+time;
 $("#tweet").val(message);
 that.updateCount();
 $(".modal-background").css("display", "block");
 $(".modal-background-color").css("display", "block");
 $("html,body").css("overflow","auto");

 }else{
 alert("Please login in twitter to tweet this");

 }
 };

 this.hideTweetArea = function() {
 $(".modal-background").css("display", "none");
 $(".modal-background-color").css("display", "none");

 $("html,body").css("overflow","hidden");
 }
})();

checkValidity is not available in all browsers. It is
recommended to give support across browsers writing your
own checkValidity function when it is not available.
You can check out one approach to this solution on the
http://perplexed.co.uk/5201_making_html5_
form_backwards_compatible.htm page.

www.ebookee.org

http://www.ebookee.org/

Chapter 9

[243]

What remains is to add a call in movienow.dragnaddrop.js. Inside our listener for
the drop event, we add:

that.showTweetArea(event.dataTransfer.getData('Title'),event.
dataTransfer.getData('Time'));

So, we now have:

$('#dropzone')[0].addEventListener('drop', function(event) {
 if (event.stopPropagation) event.stopPropagation();
 if (event.preventDefault) event.preventDefault();
 var html='<div class="selected-time">';
 html+='<div class="title">'+event.dataTransfer.getData('Title')+'</
div>';

 html+='<div class="time">'+event.dataTransfer.getData('Time')+'</
div>';		
 html+='</div>';
 $('#dropstage').append(html).show();
that.showTweetArea(event.dataTransfer.getData('Title'),event.
dataTransfer.getData('Time'));
 return false;
});

For mobile and non-drag-and-drop-enabled devices, we add:

var iOS = !!navigator.userAgent.match('iPhone OS') || !!navigator.
userAgent.match('iPad');
if(('draggable' in document.createElement('span'))&&!iOS){
 //PREVIOUS CODE
}else{
 $(".showtime").bind('click', function(event){
 var info=$(this)[0].title;
 var time=$(this).html();
			
 that.showTweetArea(info,time);
 });
}

Our tweet system is ready. If we select a movie (dragging or clicking depending on
the device), we can tweet by clicking on the tweet button.

www.ebookee.org

http://www.ebookee.org/

The App: Getting the Word Out via Twitter

[244]

Form validation support across browsers
As in other HTML5 features, form validation is not consistent across browsers. In our
case, if we select a movie, delete the text area content in the tweet window, and try to
submit, the behavior will be different in each browser.

In Firefox, the form validation we see is a red border and a message.

In Chrome, form validation uses title to show Tweet Required! message but does not
show the red border.

www.ebookee.org

http://www.ebookee.org/

Chapter 9

[245]

Safari only blocks the submit action.

Even if form validation becomes consistent, the user interface elements of every
browser are totally different (you will notice a black tooltip in Firefox and a white
one with an icon in Chrome). For now, validation can be done with JavaScript from
scratch or with jQuery plugins (http://docs.jquery.com/Plugins/Validation).

To disable HTML5 form validation, add the novalidate attribute to the form.

Even if data is validated on the client side, it must also
be validated on the server side. Remember that for
some users it is pretty easy to change JavaScript code.

New input fields types
HTML5 introduces new input types for forms. These allow better control and
validation, but sadly are not fully supported in all modern browsers. They
are shown as follows:

•	 color is used to select colors
•	 date allows for date selection
•	 datetime allows for date and time selection
•	 datetime-local allows for date and time selection with no time zone
•	 email is used for input fields that should contain email address
•	 month allows for month and year selection
•	 number is used for inputs with numeric values
•	 range renders as a slider that allows for selection of a value within a range

of numbers
•	 search is used for search fields
•	 tel is used for entering telephone numbers
•	 time allows for time selection
•	 url is used for inputs that should contain valid URLs
•	 week allows for week and year selection

www.ebookee.org

http://www.ebookee.org/

The App: Getting the Word Out via Twitter

[246]

Summary
With a wide range of social networks and services offering their data via APIs, we
can enrich our enterprise applications by complementing them with more data and
functionality. Moreover, you can use OAuth authentication to provide alternative
authentication methods to your users. Lastly, HTML5 form validation and the new
input types appear to not be sufficiently mature to apply them as solutions for
enterprise applications; instead fallback JavaScript solutions should be implemented
to provide the same experience across browsers. We hope browser developers
adopt this part of the HTML5 specification soon because it will translate to shorter
development cycles, more reliable form data, and better experiences for the user.

In the next chapter, we will cover Web Workers and the power they give enterprise
applications by adding the ability to run background processes and multi-thread
our applications.

www.ebookee.org

http://www.ebookee.org/

The App: Consuming Tweets
Via Web Workers

Up until now, JavaScript has been single-threaded. With a slow-running or lengthy
process, everything on your page could come to a screeching halt waiting for
something to finish. So far you could use AJAX or even setTimeout to delegate
your tasks; however, neither of these solutions allows for real parallel execution
and handling state gets pretty messy.

To make up for this deficiency, the HTML5 specification introduces Web Workers.
Web Workers allow you to create non-user oriented background threads that can run
simultaneously. They are typically meant for computationally heavy tasks. However,
for our MovieNow enterprise application, we will use Web Workers to find tweets
near a theater and display them. Although not necessarily computationally heavy,
Web Workers can be useful to update the state of multiple elements on a page
without interrupting the overall user experience (notice that there is still generally
only a single UI-rendering thread).

In this chapter, we will cover:

•	 Getting the data
•	 Capturing geocodes
•	 Anatomy of a Web Worker
•	 Using Web Workers to get nearby tweets
•	 Updating the event listener
•	 Styling the tweets

www.ebookee.org

http://www.ebookee.org/

The App: Consuming Tweets Via Web Workers

[248]

Getting the data
To start us out, let us create an endpoint for querying the Twitter REST API and
returning tweets near a specified geocode. At the root of the application, create a
PHP file called nearbytweets.php. Open it and paste in the following code:

<?php
 $latitude = $_GET['latitude'];
 $longitude = $_GET['longitude'];
 if (strpos($latitude, '.') == false) {
 $latitude = substr($latitude, 0, -4) . '.' . substr($latitude,
-4);
 }
 if (strpos($longitude, '.') == false) {
 $longitude = substr($longitude, 0, -4) . '.' . substr($longitude,
-4);
 }
 $tweets = file_get_contents('http://search.twitter.com/search.
json?include_entities=true&result_type=mixed&geocode=' . $latitude .
',' . $longitude . ',0.25mi');
 echo $tweets;
?>

This is a simple page that takes two parameters: latitude and longitude. It then
queries the Twitter REST API 1.1 as defined in https://dev.twitter.com/docs/
api/1.1. It returns JSON data containing tweets originating from within 0.25 miles
from the specified latitude and longitude.

Capturing geocodes
Now that we have a place to get data, we will need to capture the latitude and
longitude of each theater to send to our new endpoint. In movienow.geolocation.
js, we will make a minor modification. In the displayShowtimes method, we will
need to adjust where the theater name is displayed. Specifically, we will need to
input the latitude and longitude and add them to a new data attribute. This allows
us to use this data later on.

Change the following line:

movieHTML+='<p class="theater">'+movie.theater.title+" "+movie.
theater.address+'</p>';

Change it to:

movieHTML+='<p class="theater" data-location= "'+movie.theater.
latitude+','+movie.theater.longitude+'">'+movie.theater.title+"
"+movie.theater.address+'</p>';

www.ebookee.org

http://www.ebookee.org/

Chapter 10

[249]

Next, we will create a new JavaScript file called movienow.nearbytweets.js in the
js folder. In index.php, we will add a reference to the new JavaScript file:

<script src="js/ios-orientationchange-fix.js"></script>
<script src="js/jquery-1.8.0.min.js"></script>
<script src="js/jquery.xdomainajax.js"></script>
<script src="js/three.js"></script>
<script src="js/movienow.nearbytweets.js"></script>
<script src="js/movienow.tweet.js"></script>
<script src="js/movienow.draganddrop.js"></script>
<script src="js/movienow.charts.js"></script>
<script src="js/movienow.geolocation.js"></script>
<script src="js/movienow.js"></script>

In movienow.nearbytweets.js, we will start with some boilerplate code. Add the
following to set up the nearbytweets namespace within movienow:

var movienow = movienow || {};
movienow.nearbytweets = (function(){
 var that = this;
})();

Anatomy of a Web Worker
To really understand Web Workers, imagine a work-at-home business where
households are sent packages of promotions and envelopes. Each household is to
stuff the envelopes with the promotional literature, seal the envelopes, and send
them as a parcel back to the originating business. The work-at-home households
know nothing about the internals of the business. They merely know they are given
a parcel, they must do something with the parcel, and they must return the parcel.

Web Workers run in an isolated thread wherein they know nothing about the state of
the page that invokes them. They are simply sent a message, they do something with
that message, and then return a message. The calling procedure specifies an event
listener that responds when a message is returned by a Web Worker.

There are two types of Web Workers. They are:

•	 Dedicated Web Workers: They are sometimes referred to as just Web
Workers. They are only reachable by the script that created them, although
message ports can be used to communicate with other contexts.

•	 Shared Web Workers: They are named and share a global scope, so any
script running in the same origin can obtain a reference of this kind
of worker.

www.ebookee.org

http://www.ebookee.org/

The App: Consuming Tweets Via Web Workers

[250]

In this case, we will use Dedicated Web Workers. Web Workers are typically
defined in a separate JavaScript file. To create a Web Worker, you simply need
to instantiate it:

var worker = new Worker('mywebworker.js');

Once created, you can communicate with a Web Worker by using the
postMessage method:

worker.postMessage('Hi worker!');

To receive communications back from the Web Worker, simply define an event
listener that triggers based on the onmessage event:

worker.addEventListener('message', function(e) {
 console.log(e.data);
}, false);

The Web Worker can then be defined as follows:

self.addEventListener('message', function(e) {
 self.postMessage(e.data);
}, false);

It basically has an event listener defined for incoming messages. As messages arrive,
it executes the function attached to the message event and returns it by using the
postMessage method in much the same way it was invoked. The event listener on
the client side is invoked and everyone goes on their merry way.

If an error does occur in a Web Worker, the exception can be handled by listening
to the error event on the Web Worker:

worker.addEventListener('error', function(e) {
 console.log(e.message);
}, false);

It is important to note that the Web Worker exists in a sandbox. It is not accessing
the state of the page at all. Instead, anything it receives will always be a copy of what
was sent. Event referenced JavaScript libraries are not available. In fact, the DOM,
the window, the document, and the parent objects are unavailable, so you cannot do
any manipulation of or reading from the DOM or make use of the window object in a
Web Worker. You are a completely separate household.

You can however use the navigator object, make use of the XMLHttpRequest object,
and spawn other Web Workers.

www.ebookee.org

http://www.ebookee.org/

Chapter 10

[251]

Nested workers must be hosted within the same origin as the
parent document. Moreover, the URIs for nested workers are
resolved relative to the parent worker's location rather than
the owning document.

You can also import scripts using the importScripts method as well as use
setTimeout and setInterval.

Using Web Workers to get nearby tweets
In movienow.nearbytweets.js, we are going to define a couple of methods. First
of all, let us define an entry point method for getting tweets:

this.getTweets = function() {};

Once we have added this, we can invoke it from movienow.geolocation.js at the
very end of the displayShowtimes method:

 $("#movies-near-me li .charting-button").click(that.showCharts);
 init();
 getTweets();
};

So far, so good, but we are not doing anything yet. Let us add a new method to
movienow.nearbytweets.js called getTweetsByTheater:

this.getTweetsByTheater = function(theater) {};

The new getTweetsByTheater method will take a "theater" element and get tweets
for it. What we mean by a "theater" element in this case is a div tag of the theater
class as defined in movienow.geolocation.js. We will then invoke it from the
getTweets method using a simple jQuery call. Augment getTweets as follows:

this.getTweets = function() {
 $('.theater').each(function() {
 that.getTweetsByTheater(this);
 });
};

www.ebookee.org

http://www.ebookee.org/

The App: Consuming Tweets Via Web Workers

[252]

Now onto the meat of our script. We will instantiate our Web Worker. Let us start
by adding a skeleton of the Web Worker mechanism. Add the following to the
getTweetsByTheater method:

var worker = new Worker('js/movienow.worker.js');
worker.addEventListener('message', function(e) {
}, false);
worker.postMessage();

To finish out the skeleton, we will add a new JavaScript file called movienow.
worker.js to the js folder. Add the following code snippet to it:

self.addEventListener('message', function(e) {
}, false);

Now that we have our initial skeleton of the Web Worker set, let us extract the
geocode from the theater object passed into getTweetsByTheater and pass it along
to the Web Worker. We will take the data-location attribute we added earlier in
movienow.geolocation.js and parse out the latitude and longitude. Replace the
skeleton worker.postMessage() invocation with the following code:

var geocode = $(theater).attr('data-location');
var latitude = geocode.split(',')[0];
var longitude = geocode.split(',')[1];
worker.postMessage({
 'latitude': latitude,
 'longitude': longitude
});

Now that we are passing the latitude and longitude to the Web Worker, let us update
it to invoke the service we implemented at the beginning of this chapter. Add the
following to the body of the event listener in movienow.worker.js:

var url = '../nearbytweets.php';
var data = 'latitude='+e.data.latitude+'&longitude='+e.data.longitude;
var xhr = new XMLHttpRequest();
xhr.open('GET', url + '?' + data, true);
xhr.send(null);
xhr.onreadystatechange = function() {
 if (xhr.readyState == 4) {
 if (xhr.status == 200 || xhr.status ==0) {
 self.postMessage(xhr.responseText);
 } else {
 throw xhr.status + xhr.responseText;
 }
 }
}

www.ebookee.org

http://www.ebookee.org/

Chapter 10

[253]

Notice that we are using XMLHttpRequest. Normally, we would use the jQuery
ajax method to make such a call. However, since jQuery has dependencies on the
DOM and—as you may recall—the DOM is not available in this context, we cannot
use it here. Instead, we will have to invoke the object directly and make the request.
Once the AJAX request is made and the onreadystatechange event is triggered,
the payload is passed back to the client via self.postMessage().

The complete movienow.worker.js code should look similar to the following
code snippet:

self.addEventListener('message', function(e) {
 var url = '../nearbytweets.php';
 var data = 'latitude='+e.data.latitude+'&longitude='+e.data.
longitude;
 var xhr = new XMLHttpRequest();
 xhr.open('GET', url + '?' + data, true);
 xhr.send(null);
 xhr.onreadystatechange = function() {
 if (xhr.readyState == 4) {
 if (xhr.status == 200 || xhr.status ==0) {
 self.postMessage(xhr.responseText);
 } else {
 throw xhr.status + xhr.responseText;
 }
 }
 }
}, false);

It is possible to implement Web Workers without creating
a separate worker file. You can check out a tutorial on
implementing this technique at the following location:
http://www.html5rocks.com/en/tutorials/
workers/basics/#toc-inlineworkers

Updating the event listener
Going back to movienow.nearbytweets.js, we can update the event listener to take
the JSON object returned from the Web Worker. If you look at the following code
that we will add to the event listener body, you will see that we get the returned
data and loop through the result set to capture the text of each tweet:

var data = objectifyJSON(e.data);
var nearbyTweets = '';
for (var i=0; i<data.results.length; i++) {

www.ebookee.org

http://www.ebookee.org/

The App: Consuming Tweets Via Web Workers

[254]

 nearbyTweets += ''+data.results[i].text+'';
}
var tweetCounter = (data.results.length==1) ? data.results.length+"
tweet" : data.results.length+" tweets";
$(theater)
 .append(' ('+ tweetCounter +')')
 .parents('li').append('<section class="nearby-tweets"><h3>Nearby
Tweets</h3>'+nearbyTweets+'</section>')
 .find('.tweet-count').click(that.showNearbyTweets)
 .parents('li').find('.nearby-tweets').click(that.hideNearbyTweets);

Remember that we defined the objectifyJSON function in
previous chapters inside movienow.geolocation.js. It
returns the same input if the parameter passed is an object
and parses the content and returns an object if it is a string.

Here we are doing two things. First, we are appending a tweet count to the theater
name (notice that we verify the number of tweets to add a singular tweet or plural
tweets label). Secondly, we are adding a section element containing an unordered
list of tweets. The target behavior is that we click on the tweet count and display the
tweets. In addition, we will need to add two more methods to the nearbytweets
object to show and hide the tweets:

this.showNearbyTweets = function(event) {
 $(event.target).parents('li').addClass('nearby-tweets').
addClass('open');
};
this.hideNearbyTweets = function(event) {
 $(this).parents('li').removeClass('open');
};

The complete movienow.nearbytweets.js code should look like the following:

movienow.nearbytweets = (function(){
 var that = this;
 this.getTweets = function() {
 $('.theater').each(function() {
 that.getTweetsByTheater(this);
 });
 };
 this.showNearbyTweets = function(event) {
 $(event.target).parents('li').addClass('nearby-tweets').
addClass('open');

www.ebookee.org

http://www.ebookee.org/

Chapter 10

[255]

 };
 this.hideNearbyTweets = function(event) {
 $(this).parents('li').removeClass('open');
 };
 this.getTweetsByTheater = function(theater) {
 var worker = new Worker('js/movienow.worker.js');
 worker.addEventListener('message', function(e) {
 var data = objectifyJSON(e.data);
 var nearbyTweets = '';
 for (var i=0; i<data.results.length; i++) {
 nearbyTweets += ''+data.results[i].text+'';
 }
 var tweetCounter = (data.results.length==1) ? data.results.
length+" tweet" : data.results.length+" tweets";
 $(theater)
 .append(' ('+ tweetCounter +')</
span>')
 .parents('li').append('<section class="nearby-
tweets"><h3>Nearby Tweets</h3>'+nearbyTweets+'</section>')
 .find('.tweet-count').click(that.showNearbyTweets)
 .parents('li').find('.nearby-tweets').click(that.
hideNearbyTweets);
 }, false);
 var geocode = $(theater).attr('data-location');
 var latitude = geocode.split(',')[0];
 var longitude = geocode.split(',')[1];
 worker.postMessage({
 'latitude': latitude,
 'longitude': longitude
 });
 };
})();

Before we go on, we need to make one more modification to movienow.
geolocation.js. Because we are mimicking the same behavior as the info and
ratings buttons, we will need to make sure we are hiding and showing these in
conjunction with the nearby tweets section.

Change the showCharts method by changing the following line:

that.charts($(event.target).parent().parent().removeClass("desc").
addClass("open").find("canvas")[0], "3DChart");

www.ebookee.org

http://www.ebookee.org/

The App: Consuming Tweets Via Web Workers

[256]

We will change it to:

that.charts($(event.target).parent().parent().removeClass("desc").
addClass("open").removeClass('nearby-tweets').find("canvas")[0],
"3DChart");

Change the showDetails method by changing the following line:

$(event.target).parent().parent().addClass("desc").addClass("open");

Change it to:

$(event.target).parent().parent().addClass("desc").addClass("open").
removeClass('nearby-tweets');

Styling the tweets
Now that the mechanics are set up for retrieving and loading nearby tweets, we
will need to add some styles to make everything look complete. First, we will need
to add the same treatment for the new nearby-tweets section as we have for the
description and charting sections. We will do this by modifying the following
lines in styles.css.

Look for the following line:

#movies-near-me li,#movies-near-me li section.main-info,#movies-near-
me li section.description,#movies-near-me li section.charting{

Change it by adding a selector for nearby-tweets:

#movies-near-me li,#movies-near-me li section.main-info,#movies-near-
me li section.description,#movies-near-me li section.charting,#movies-
near-me li section.nearby-tweets{

Likewise, look for the following line:

#movies-near-me li section.description,#movies-near-me li section.
charting{

Change it by adding a selector for nearby-tweets:

#movies-near-me li section.description,#movies-near-me li section.
charting,#movies-near-me li section.nearby-tweets{

Now add the following code to styles.css:

.tweet-count {
 cursor:pointer;
 color:#0000cd;

www.ebookee.org

http://www.ebookee.org/

Chapter 10

[257]

}
#movies-near-me li section.nearby-tweets,#movies-near-me li.nearby-
tweets section.description,#movies-near-me li.nearby-tweets section.
charting {
 display:none;
}
#movies-near-me li.nearby-tweets section.nearby-tweets {
 display:block;
}
#movies-near-me li section.nearby-tweets {
 overflow:scroll;
 padding-left:10px;
}
#movies-near-me li section.nearby-tweets h3 {
 padding: 10px 0 3px 0;
}
#movies-near-me li section.nearby-tweets li {
 height:auto;
 border:0;
 margin-bottom:10px;
}

With the styles in place, we can test out our behavior by previewing our changes.
You should see the following when the data loads:

www.ebookee.org

http://www.ebookee.org/

The App: Consuming Tweets Via Web Workers

[258]

Notice (18 tweets) next to the theater name. It is the result of the Web Worker's
efforts. If you click on it, you should see the following:

If all goes well, the nearby tweets section should open, revealing the latest tweets
that were posted near the theater's location.

Summary
We walked through the anatomy of a Web Worker, how to set one up, and how it
can be used to solve problems without disaffecting the user experience. Although a
contrived example, we stepped through how to use Web Workers to get tweets near
a theater based on its geocode.

Some real world use cases for Web Workers include:

•	 Processor-intensive calculations that should not block the general enterprise
application flow

•	 Auto-correction and syntax highlighting
•	 Posting images to a message queue
•	 Consuming data in parallel using concurrent AJAX requests

In the next chapter, we will walk through debugging applications. We will
cover tools available at our disposal to get under the hood and figure out what
is happening in our enterprise applications. We will also cover some powerful
techniques using proxies to sniff out problems as they occur.

www.ebookee.org

http://www.ebookee.org/

Finishing Up: Debugging
Your App

The debugging process can require a considerable amount of time during the
development process. There may be unforeseen behavior, edge cases, and even
typos that need to be found and resolved. For that reason, it is necessary to optimize
as much as possible and the most important first step is in selecting the right tools.
Any development process has to involve testing and debugging; even if your
application is working perfectly as expected you should execute test cases and
analyze performance to ensure its integrity as you make it evolve and introduce
new features. This chapter covers a series of tools for debugging and analyzing
performance in your enterprise applications.

This chapter will cover the following:

•	 What to look for
•	 Which tools to use
•	 Playing with HTML and CSS
•	 Step by step with JavaScript
•	 Mobile debugging
•	 Web debugging proxies

www.ebookee.org

http://www.ebookee.org/

Finishing Up: Debugging Your App

[260]

What to look for
The debugging process on the client focuses on elements interpreted by a
browser. Unless we are using an external plugin (like the Adobe Flash Player),
we need to debug:

•	 HTML to find incorrect styles or test changes in our tag structure
•	 CSS to verify correctness of styles or test changes on them
•	 JavaScript to validate code execution, find possible errors, or test

changes in our code

Additionally, we should test the load time of assets (media, html, css, and js files)
and execution time of JavaScript (profiling).

Which tools to use
Most modern browsers now provide tools for debugging web applications.
Because cross-browser compatibility is important, we need to know how
they work. In general, every debugger gives you the ability to do the following:

•	 Inspect and modify HTML in real time and select visual elements on
the page and show its equivalents in HTML code (HTML | Elements)

•	 Inspect and modify CSS in real time (HTML |Elements or CSS |
Resources | Style)

•	 Inspect and modify (or declare) JavaScript in real time and create
breakpoints to stop code execution and inspect step by step
(Console | Script | Sources)

•	 Analysis of loading time of each asset (Network | Net | Timeline |
Instrument)

www.ebookee.org

http://www.ebookee.org/

Chapter 11

[261]

Let us take a look at some of the most popular browsers' debugging tools:

Firefox 15.0.1 Firebug (plugin)

The Firebug plugin is not installed by default on Firefox. You will
need to go to http://getfirebug.com/ and click on Install
Firebug from Firefox.

Chrome 22.0.1229.79 Developer Tools

www.ebookee.org

http://www.ebookee.org/

Finishing Up: Debugging Your App

[262]

For our purposes and because it is one of the most robust tools, we are going to
walk through the Firebug plugin for Firefox. Many of the same basic concepts
(HTML inspection, script debugging, use of the console) exist in the developer
tools provided in other browsers.

There are many debugging tools available for Internet Explorer in
particular. In addition to the Developer Tools included in Internet
Explorer 8 and 9, there is DebugBar (http://www.debugbar.com/)
and dynaTrace (http://www.compuware.com/application-
performance-management/ajax-performance-testing.html).

Playing with HTML and CSS
In Firebug, you can explore your HTML DOM objects using the HTML tab:

www.ebookee.org

http://www.ebookee.org/

Chapter 11

[263]

Hovering on each tag, it is possible to see its corresponding rendered element
highlighted. If you decide to navigate through the rendered page, you can click
on the Inspect button.

The Inspect button allows you to select areas of the rendered page to see the
corresponding HTML code.

By clicking on Edit, it is possible to modify your HTML code within the browser
itself. Of course, you are not modifying the page itself but rather the browser's local
copy. The rendered page changes automatically as a result of the modifications. This
is very useful in trying out changes to your HTML structure and getting instant
feedback before implementing them in your code.

www.ebookee.org

http://www.ebookee.org/

Finishing Up: Debugging Your App

[264]

The right-hand side panel allows us to view styles of the DOM object selected,
including references to the file and line number (in the right-hand side highlighted in
blue). The Style tab groups the styles by priority; you can modify or create properties
or modify selectors in this tab with a double-click.

Computed lists the computed styles, which are a merger of browser, user, and
author-applied styles where relative values are calculated. For example, if a div tag
has a style of width:50%, and it is surrounded by a div set to width:760px, then the
computed style will be width:380px.

www.ebookee.org

http://www.ebookee.org/

Chapter 11

[265]

Layout displays a graphic representation of the padding, border, and margin applied
based on the CSS box model.

DOM shows the selected DOM's object properties. There is a wealth of information
here including the document object as a "browseable" tree and the ability to see the
JavaScript global namespace to see which objects have been loaded.

www.ebookee.org

http://www.ebookee.org/

Finishing Up: Debugging Your App

[266]

You can use the CSS tab to modify your styles as
they are in each css file.

Step by step with JavaScript
The Script tab allows you to inspect all JavaScript files used.

After selecting the file that you wish to inspect, you can execute a step-by-step
execution of your JavaScript code. Find the line where you want to stop and click
on the line number to create a breakpoint. A graphic representing the breakpoint
will appear.

Minified JavaScript files will generally show up as a single line when
viewed in the Script tab. It is useful to include "unminified" files in
debug versions of your page.

www.ebookee.org

http://www.ebookee.org/

Chapter 11

[267]

Now refresh the browser and you will see how the execution stops on that line.

www.ebookee.org

http://www.ebookee.org/

Finishing Up: Debugging Your App

[268]

The right-hand side panel will show you variables available in the present
scope. You can use this to change variable values, input your own variables,
or check expressions.

In the top-right corner you will find controls to continue code execution:

The play symbol continues the code execution, the small yellow arrow pointing
down continues execution to the next line and will enter a function if one is invoked,
the large yellow arrow pointing down continues execution to the next line in the
current execution context and passes over functions that are invoked, and the last
yellow arrow steps out of a function. Of course, you can always hover over each
button to get this information as there is usually a tool tip for each button. This
allows you to control how you want to step through your code. You can stop by
placing a breakpoint where you want to understand how a particular block of code is
evaluating. You can then step through each line of code thereafter, executing method
invocations you are not concerned about or stepping out entirely to a calling method.
At each step, you can see what variables get set, what is available in the current
scope, and really get a sense for what your code is doing.

www.ebookee.org

http://www.ebookee.org/

Chapter 11

[269]

JavaScript console
The Console tab logs JavaScript errors, warnings, and Ajax calls. You can force your
code to write to the console using the following in your JavaScript code:

console.log("CONTENT TO WRITE");

This is particularly useful for writing messages out to understand how your code is
executing. You can write debug statements to show particular variable values or just
indicate that a specific block is executing. You can print objects too and inspect them
in Firebug.

The console object includes other useful debugging methods such as info(), warn(),
and error() to give you more enhanced debugging feedback.

It is good practice to remove or comment out all console calls in your
code when you deploy to production as some browsers do not support
it and will break and stop execution entirely. One solution for this is
to create a script that removes these lines and include it in your build
process. Oftentimes, such a script also packages and minifies your code.

An interesting feature of the console is that it lets you write code and execute it in
real time. You can find a prompt at the bottom that allows you to enter code.

Let us say you want to print all images inside the object with the movies-near-me
ID, you can write this in your console:

$("#movies-near-me img").each(function(){console.log($(this).
attr("src"))})

www.ebookee.org

http://www.ebookee.org/

Finishing Up: Debugging Your App

[270]

You should see the following result:

Analyzing load times
The Net tab compiles all network calls including status, domain, file size, IP, and
load time. You can use this section to verify where performance problems lie.

www.ebookee.org

http://www.ebookee.org/

Chapter 11

[271]

JavaScript profiling
The Console tab provides a profile tool to analyze performance of our JavaScript
code. To execute a profile, click on the Profile button, then execute your JavaScript
action (or refresh the page if you want to profile the main JavaScript execution) and
click on the Profile button again.

No need to worry if the functions are registered as anonymous. The File field gives
the exact line of code.

Mobile debugging
Debugging HTML, CSS, and JavaScript can be painful in mobile web applications,
particularly if we are using a touch device. Remote debugging provides a way to test
your enterprise web applications in mobile devices using your desktop or laptop.

Chrome supports remote debugging via USB for Android devices:
https://developers.google.com/chrome/mobile/docs/debugging.

Firefox 15 introduces remote debugging for Android too: https://hacks.mozilla.
org/2012/08/remote-debugging-on-firefox-for-android/

www.ebookee.org

http://www.ebookee.org/

Finishing Up: Debugging Your App

[272]

Previous to Version 6, iOS devices had a simple interface inside the device
for debugging.

Safari 6.0.1 (Mac only) and iOS 6 support remote debugging. To start remote
debugging in any iOS 6:

1.	 In the device (iPhone, iPad, or iPod) go to Settings | Safari | Advanced
and enable the Web Inspector option.

2.	 Open Safari in a Mac computer.
3.	 Open the web application to debug using Safari in your iOS device.
4.	 Connect the device to your Mac computer using a USB cable.
5.	 If you don't have the Develop menu item on Safari (Mac), open Safari |

Preferences | Advanced and check Show Develop menu in the menu bar.
6.	 Go to Develop | Device name and then choose the web application.
7.	 You should now see a web inspector.

8.	 There is also an online tool called JConsole, which allows you to remotely
control and debug browsers in other windows and even devices. It works
by giving you a script reference to include in the application you are
debugging. It then provides a console to which you can send console.log
messages and other debugging information. More information can be found
at http://jsconsole.com/remote-debugging.html.

www.ebookee.org

http://www.ebookee.org/

Chapter 11

[273]

Web debugging proxies
A proxy is a piece of hardware that acts as an intermediary between the client and
server. Application of software proxies as a way to debug web applications is a
widely used practice, the main purpose of which involves inspecting data from
requests and viewing the server responses.

On the Windows platform, we recommend Fiddler. It can be found at http://www.
fiddler2.com/fiddler2/. If you are using a Mac, you can use Charles, which is
found at http://www.charlesproxy.com/. Both are web proxies that record the
communication between server and client.

Simply open the application, turn on the capture, and load your web application.
Here you can see Charles capturing MovieNow requests:

www.ebookee.org

http://www.ebookee.org/

Finishing Up: Debugging Your App

[274]

It is possible to simulate responses using proxies as well. For example, in Charles you
can go to Tools and then Map Local... to use local files or services as the response
to your application. You can use Rewrite... in the same menu to modify part of a
response and send it back to your application. This is a valuable feature for testing
edge cases.

If you want to use Charles with an iOS device and carry out remote debugging,
follow these steps:

1.	 Get your Mac IP using the ipconfig getifaddr en1. command
in Terminal.

2.	 Activate the option Enable Mac OS X Proxy in the Proxy menu.
3.	 Connect your iOS device to the same network used by your Mac computer

running Charles.
4.	 In your iOS device, go to Settings | Wi-Fi and click on the blue arrow for

your connection and in the HTTP Proxy section insert your Mac IP and the
port used by Charles (by default it is 8888).

5.	 Go to Safari in your iOS device and navigate.
6.	 A warning should show in Charles informing you that a new connection has

been attempted. Click on Allow.
7.	 Now you should be able to record your traffic.

www.ebookee.org

http://www.ebookee.org/

Chapter 11

[275]

Summary
In this chapter, we covered useful debugging tools including mobile and web proxies
as well as ways of manipulating HTML, CSS, and JavaScript in the browser in order
to debug our applications. As developers, it is good practice for us to understand all
the available options for debugging our code. While debugging errors that happen
only in one browser, we must pay special attention to the technical restrictions and
features of that browser because these limitations are often the cause. For example,
complicated JavaScript code can be slow in browsers like Internet Explorer 7. Using
the tools available for that browser gives us insight into the internals of that browser
and thus knowledge about preventing bugs in the future.

In the next chapter, we will go over testing tools and frameworks for enterprise
application projects and the advantages of automated functional testing.

www.ebookee.org

http://www.ebookee.org/

www.ebookee.org

http://www.ebookee.org/

Finishing Up:
Testing Your App

While the subject of testing could span whole books and there are many books on the
subject indeed, we will offer a framework for testing HTML5 enterprise applications
as well as an outline of cogent topics that will serve as a point of departure for
further study. Different testing tools come with their own particular set of idioms;
we will cover the concepts underlying those idioms.

This chapter will cover the following:

•	 Unit testing
•	 Functional testing
•	 Browser testing
•	 Continuous integration

Types of testing
Testing can happen on many different levels. From the code level to integration
and even testing individual functions of the user-facing implementation of an
enterprise application, there are numerous tools and techniques to test your
application. In particular, we will cover the following:

•	 Unit testing
•	 Functional testing
•	 Browser testing

www.ebookee.org

http://www.ebookee.org/

Finishing Up: Testing Your App

[278]

Black box versus white box testing
Testing is often talked about within the context of black box versus
white box testing. This is a useful metaphor in understanding testing
at different levels. With black box testing, you look at your application
as a black box knowing nothing of its internals—typically from the
perspective of a user of the system. You simply execute functionality
of the application and test whether the expected outcomes match the
actual outcomes. White box differs from black box testing in that you
know the internals of the application upfront and can thus pinpoint
failures directly and test for specific conditions. In this case, you
simply feed in data into specific parts of the system and test whether
the expected output matches the actual output.

Unit testing
The first level of testing is at the code level. When you are testing specific
and individual units of code on whether they meet their stated goals, you are
unit testing. Unit testing is often talked about in conjunction with test-driven
development, the practice of writing unit tests first and then writing the minimal
amount of code necessary to pass those tests. Having a suite of unit tests against
your code and employing test-driven processes—when done right—can keep
your code focused and help to ensure the stability of your enterprise application.

Typically, unit tests are set up in a separate folder in your codebase. Each test case
is composed of the following parts:

•	 Setup to build the test conditions under which the code or module is
being tested

•	 An instantiation and invocation of the code or module being tested
•	 A verification of the results returned

Setting up your unit test
You usually start by setting up your test data. For example, if you are testing a piece of
code that requires an authenticated account, you might consider creating a set of test
users of your enterprise application. It is advisable that your test data be coupled with
your test so that your tests are not dependent on your system being in a specific state.

www.ebookee.org

http://www.ebookee.org/

Chapter 12

[279]

Invoking your target
Once you have set up your test data and the conditions in which the code you are
testing needs to run, you are ready to invoke it. This can be as simple as invoking
a method.

Mocking is a very important concept to understand when unit testing. Consider a
set of unit tests for a business logic module that has a dependency on some external
application programming interface (API). Now imagine if the API goes down. The
tests would fail. While it is nice to get an indication that the API you are dependent
upon is having issues, a failing unit test because of this is misleading because the goal
of the unit test is to test the business logic rather than external resources on which you
are dependent. This is where mock objects come into the picture. Mock objects are
stubs that replicate the interface of a resource. They are set up to always return the
same data the external resource would under normal conditions. This way you are
isolating your test to just the unit of code you are testing.

Mocking employs a pattern called dependency injection or inversion of control.
Sure, the code you are testing may be dependent on an external resource. Yet how
will you swap it in a mock resource? Code that is easy to unit test allows you to
pass in or "inject" these dependencies when invoking it.

Dependency injection is a design pattern where code that is dependent on an external
resource has that dependency passed into it thereby decoupling your code from that
dependency. The following code snippet is difficult to test since the dependency is
encapsulated into the function being tested. We are at an impasse.

var doSomething = function() {
 var api = getApi();
 //A bunch of code
 api.call();
}
var testOfDoSomething = function() {
 var mockApi = getMockApi();
 //What do I do now???
}

The following new code snippet uses dependency injection to circumvent the problem
by instantiating the dependency and passing it into the function being tested:

var doSomething = function(api) {
 //A bunch of code
 api.call();
}

www.ebookee.org

http://www.ebookee.org/

Finishing Up: Testing Your App

[280]

var testOfDoSomething = function() {
 var mockApi = getMockApi();
 doSomething(mockApi);
}

In general, this is good practice not just for unit testing but for
keeping your code clean and easy to manage. Instantiating
a dependency once and injecting where it is needed makes
it easier to change that dependency if the need occurs. There
are many mocking frameworks available including JsMockito
(http://jsmockito.org/) for JavaScript and Mockery
(https://github.com/padraic/mockery) for PHP.

Verifying the results
Once you have invoked the code being tested, you need to capture the results
and verify them. Verification comes in the form of assertions. Every unit testing
framework comes with its own set of assertion methods, but the concept is the
same: take a result and test it against an expectation. You can assert whether two
things are equal. You can assert whether two things are not equal. You can assert
whether a result is a valid number of a string. You can assert whether one value is
greater than another. The general idea is you are testing actual data against your
hypothesis. Assertions usually bubble up to the framework's reporting module
and are manifested as a list of passed or failed tests.

Frameworks and tools
A bevy of tools have arisen in the past few years that aid in unit testing of JavaScript.
What follows is a brief survey of notable frameworks and tools used to unit test
JavaScript code.

JsTestDriver
JsTestDriver is a framework built at Google for unit testing. It has a server that runs
on multiple browsers on a machine and will allow you to execute test cases in the
Eclipse IDE.

www.ebookee.org

http://www.ebookee.org/

Chapter 12

[281]

This screenshot shows the results of JsTestDriver. When run, it executes all tests
configured to run and displays the results.

More information about JsTestDriver can be found at http://code.google.com/p/
js-test-driver/.

www.ebookee.org

http://www.ebookee.org/

Finishing Up: Testing Your App

[282]

QUnit
QUnit is a JavaScript unit testing framework created by John Resig of jQuery fame.
To use it, you need to create only a test harness web page and include the QUnit library
as a script reference. There is even a hosted version of the library. Once included, you
need to only invoke the test method, passing in a function and a set of assertions. It will
then generate a nice report.

Although QUnit has no dependencies and can test standard JavaScript code,
it is oriented around jQuery. More information about QUnit can be found at
http://qunitjs.com/.

Sinon.JS
Often coupled with QUnit, Sinon.JS introduces the concept of spying wherein
it records function calls, the arguments passed in, the return value, and even the
value of the this object. You can also create fake objects such as fake servers and
fake timers to make sure your code tests in isolation and your tests run as quickly
as possible. This is particularly useful when you need to make fake AJAX requests.

More information about Sinon.JS can be found at http://sinonjs.org/.

www.ebookee.org

http://www.ebookee.org/

Chapter 12

[283]

Jasmine
Jasmine is a testing framework based on the concept of behavior-driven development.
Much akin to test-driven development, it extends it by infusing domain-driven design
principles and seeks to frame unit tests back to user-oriented behavior and business
value. Jasmine as well as other behavior-driven design based frameworks build test
cases—called specs—using as much English as possible so that when a report is
generated, it reads more naturally than a conventional unit test report.

More information about Jasmine can be found at http://pivotal.github.com/
jasmine/.

Functional testing
Selenium has become the name in website functional testing. Its browser automation
capabilities allow you to record test cases in your favorite web browser and run them
across multiple browsers. When you have this, you can automate your browser tests,
integrate them with your build and continuous integration server, and run them
simultaneously to get quicker results when you need them.

Selenium includes the Selenium IDE, a utility for recording and running Selenium
scripts. Built as a Firefox add-on, it allows you to create Selenium test cases by
loading and clicking on web pages in Firefox. You can easily record what you
do in the browser and replay it. You can then add tests to determine whether
actual behavior matches expected behavior. It is very useful for quickly creating
simple test cases for a web application. Information on installing it can be found
at http://seleniumhq.org/docs/02_selenium_ide.html.

www.ebookee.org

http://www.ebookee.org/

Finishing Up: Testing Your App

[284]

The following screenshot shows the Selenium IDE. Click on the red circle graphic
on the right-hand side to set it to record, and then browse to http://google.com in
the browser window and search for "html5". Click on the red circle graphic to stop
recording. You can then add assertions to test whether certain properties of the page
match expectations. In this case, we are asserting that the text of the first link in the
search results is for the Wikipedia page for HTML5. When we run our test, we see
that it passes (of course, if the search results for "html5" on Google change, then this
particular test will fail).

Selenium includes WebDriver, an API that allows you to drive a browser natively
either locally or remotely. Coupled with its automation capabilities, WebDriver can
run tests against browsers on multiple remote machines to achieve greater scale.

For our MovieNow application, we will set up functional testing by using the
following components:

•	 The Selenium standalone server
•	 The php-webdriver connector from Facebook
•	 PHPUnit

www.ebookee.org

http://www.ebookee.org/

Chapter 12

[285]

The Selenium standalone server
The Selenium standalone server routes requests to the HTML5 application. It needs
to be started for the tests to run. It can be deployed anywhere, but by default it is
accessed at http://localhost:4444/wd/hub. You can download the latest version
of the standalone server at http://code.google.com/p/selenium/downloads/
list or you can fire up the version included in the sample code under the test/lib
folder. To start the server, execute the following line via the command line (you will
need to have Java installed on your machine):

java -jar lib/selenium-server-standalone-#.jar

Here, # indicates the version number.

You should see something akin to the following:

At this point, it is listening for connections. You will see log messages here as you
run your tests. Keep this window open.

www.ebookee.org

http://www.ebookee.org/

Finishing Up: Testing Your App

[286]

The php-webdriver connector from Facebook
The php-webdriver connector serves as a library for WebDriver in PHP. It gives
you the ability to make and inspect web requests using drivers for all the major web
browsers as well as HtmlUnit. Thus it allows you to create test cases against any web
browser. You can download it at https://github.com/facebook/php-webdriver.
We have included the files in the webdriver folder.

PHPUnit
PHPUnit is a unit testing framework that provides the constructs necessary for
running our tests. It has the plumbing necessary for building and validating test cases.
Any unit testing framework will work with Selenium; we have chosen PHPUnit since
it is lightweight and works well with PHP. You can download and install PHPUnit
any number of ways (you can go to http://www.phpunit.de/manual/current/
en/installation.html for more information on installing it). We have included the
phpunit.phar file in the test/lib folder for your convenience. You can simply run it
by executing the following via the command line:

php lib/phpunit.phar <your test suite>.php

To begin, we will add some PHP files to the test folder. The first file is webtest.
php. Create this file and add the following code:

<?php
require_once "webdriver/__init__.php";

class WebTest extends PHPUnit_Framework_TestCase {
 protected $_session;
 protected $_web_driver;

 public function __construct() {
 parent::__construct();
 $_web_driver = new WebDriver();
 $this->_session = $_web_driver->session('firefox');
 }

 public function __destruct() {
 $this->_session->close();
 unset($this->_session);
 }
}
?>

www.ebookee.org

http://www.ebookee.org/

Chapter 12

[287]

The WebTest class integrated WebDriver into PHPUnit via the php-webdriver
connector. This will serve as the base class for all of our test cases. As you can
see, it starts with the following:

require_once "webdriver/__init__.php";

This is a reference to __init__.php in the php-webdriver files. This brings in all the
classes needed for WebDriver. In the constructor, WebTest initializes the driver and
session objects used in all test cases. In the destructor, it cleans up its connections.

Now that we have everything set up, we can create our first functional test. Add a
file called generictest.php to the test folder. We will import WebTest and extend
that class as follows:

<?php
require_once "webtest.php";

class GenericTest extends WebTest {
}
?>

Inside of the GenericTest class, add the following test case:

public function testForData() {
 $this->_session->open('http://localhost/html5-book/Chapter%2010/');
 sleep(5); //Wait for AJAX data to load
 $result = $this->_session->element("id", "movies-near-me")->text();
 //May need to change settings to always allow sharing of location
 $this->assertGreaterThan(0, strlen($result));
}

We will open a connection to our application (feel free to change the URL to wherever
you are running your HTML5 application), wait 5 seconds for the initial AJAX to load,
and then test for whether the movies-near-me div is populated with data.

To run this test, go to the command line and execute the following lines:

chmod +x lib/phpunit.phar

php lib/phpunit.phar generictest.php

www.ebookee.org

http://www.ebookee.org/

Finishing Up: Testing Your App

[288]

You should see the following:

This indicates that the test is passed. Congratulations! Now let us see it fail. Add the
following test case:

public function testForTitle() {
 $this->_session->open('http://localhost/html5-book/Chapter%2010/');
 $result = $this->_session->title();
 $this->assertEquals('Some Title', $result);
}

www.ebookee.org

http://www.ebookee.org/

Chapter 12

[289]

Rerun PHPUnit and you should see something akin to the following:

As you can see, it was expecting 'Some Title' but actually found 'MovieNow'.
Now that we have gotten you started, we will let you create your own tests. Refer
to http://www.phpunit.de/manual/3.7/en/index.html for guidance on the
different assertions you can make using PHPUnit.

More information about Selenium can be found at http://seleniumhq.org/.

Browser testing
With all the talk of browser compatibility in earlier chapters, one pass at testing
HTML5 enterprise applications must involve actually looking at the application
on different web browsers. Thankfully, many web browsers are offered on multiple
platforms. Google Chrome, Mozilla Firefox, and Opera all have versions that will
install easily on Windows, Mac OSX, and flavors of Linux such as Ubuntu. Safari
has versions for Windows and Mac OSX, and there are ways to install it on Linux
with some tweaking.

www.ebookee.org

http://www.ebookee.org/

Finishing Up: Testing Your App

[290]

Nevertheless, Internet Explorer can only run on Windows. One way to work around
this limitation is to install virtualization software. Virtualization allows you to run an
entire operating system virtually within a host operating system. It allows you to run
Windows applications on Mac OSX or Linux applications on Windows. There are a
number of notable virtualization packages including VirtualBox, VMWare Fusion,
Parallels, and Virtual PC.

Although Virtual PC runs only on Windows, Microsoft does
offer a set of prepackaged virtual hard drives that include
specific versions of Internet Explorer for testing purposes.
See the following URLs for details: http://www.microsoft.
com/en-us/download/details.aspx?id=11575.

Another common way to test for compatibility is to use web-based browser
virtualization. There are a number of services such as BrowserStack (http://www.
browserstack.com/), CrossBrowserTesting (http://crossbrowsertesting.com/),
and Sauce Labs (https://saucelabs.com/) that offer a service whereby you can enter
a URL and see it rendered in an assortment of web browsers and platforms (including
mobile) virtually through the web. Many of them even work through a proxy to allow
you to view, test, and debug web applications running on your local machine.

Continuous integration
With any testing solution, it is important to create and deploy your builds and run
your tests in an automated fashion. Continuous integration solutions like Hudson,
Jenkins, CruiseControl, and TeamCity allow you to accomplish this. They merge code
from multiple developers, and run a number of automated functions from deploying
modules to running tests. They can be invoked to run on a schedule basis or can be
triggered by events such as a commitment of code to a code repository via a post-
commit hook.

www.ebookee.org

http://www.ebookee.org/

Chapter 12

[291]

Summary
We covered several types of testing in this chapter including unit testing, functional
testing, and browser testing. For each type of testing, there are many tools to help
you make sure that your enterprise application runs in a stable way, most of which
we covered bar a few. Because every minute change to your application code has the
potential to destabilize it, we must assume that that every change does. To ensure that
your enterprise applications remain stable and with minimal defect, having a testing
strategy in place with a rich suite of tests—from unit to functional—combined with
a continuous integration server running those tests is essential. One must, of course,
weigh the investment in time for writing and executing tests against the time needed
for writing production code, but the savings in long-term maintenance costs can make
that investment worthwhile.

In the next chapter, we will cover techniques to ensure your enterprise application
runs at peak performance including a discussion on profiling.

www.ebookee.org

http://www.ebookee.org/

www.ebookee.org

http://www.ebookee.org/

Finishing Up: Performance
We will finish off by talking about performance and with good reason. While it is
important to think about performance while developing your enterprise application,
you may end up optimizing for things that do not exhibit any performance issues
later on. This is often referred to as premature optimization and can end up wasting
a lot of time. Although it is a good practice to understand performance implications
of every decision of the development process, web performance optimization should
not be conceived as a final goal; instead it is a constant tuning to improve and reach
acceptable speed times for our enterprise application. Our real goal is to build our
application and ensure that it functions correctly, then, if it is still necessary, improve
the response times.

In this chapter we will cover:

•	 Web Performance Optimization (WPO)
•	 Following standards
•	 Optimizing images
•	 Optimizing CSS
•	 JavaScript performance considerations
•	 Additional page performance considerations
•	 Performance analytics

Web Performance Optimization (WPO)
 Because an HTML5 enterprise application has many different moving parts, it is
important to consider which parts you are optimizing. By and large, your HTML5
enterprise application will consist of HTML, images, and CSS and JavaScript code,
and there are ways to optimize all three.

www.ebookee.org

http://www.ebookee.org/

Finishing Up: Performance

[294]

Following standards
HTML was developed to be a forgiving language; that is, mistakes in syntax rather
than blowing up the page and causing endless debugging nightmares are dealt with
in a more graceful manner. The rendering engine attempts to ascertain the intent of
the markup and lays out the page accordingly. In essence, it stumbles but manages
to keep its footing. Of course, a race run without hurdles goes faster than one run
with hurdles. In addition, different web browsers will recover from such errors
in different ways leading to inconsistent results when your HTML5 enterprise
application is viewed in different browsers. That is why it is important to deliver
clean, standards-compliant markup to the browser.

Despite the fact that following standards is a good base to
start our optimizations, this could lead, in some cases, to more
verbose code (increasing parsing time). Moreover, HTML5,
unlike its previous versions, is not a finished standard yet and
should be considered as a guidance more than as a set of rules.

Fortunately, there are many tools out there that will validate your markup for you.
The World Wide Web Consortium (W3C), which is the body that develops web
standards, has its own validation tools that can be found at http://validator.
w3.org/. There are also tools such as HTML Lint (http://lint.brihten.com/
html/) and HTML Tidy (http://infohound.net/tidy/) that will clean your
markup for you. It is a good practice to validate your markup to make sure your
enterprise applications behave quickly and consistently.

Optimizing images
Most websites these days embed images, and often these images are the biggest
offenders when it comes to performance. Because of limited bandwidth and the
large sizes of image files, your enterprise application could be in fact fairly snappy
only to force users to wait while large images are delivered to their browsers. It is
key to web optimize your images before using them in your web application.

There are two considerations for web optimization: size and type. With regard to
size, while it is possible to set the width and height dimensions of an image in the
img tag, it is a common mistake to take a single large image and use it for different
purposes on a web application that calls for different sizes. For example, when
displaying thumbnails, it is a bad practice to size a larger image down using only
the img tag properties. Instead you should create different variants or renditions
of the image for different purposes.

www.ebookee.org

http://www.ebookee.org/

Chapter 13

[295]

Specifying the width and height attributes on the img
tag lets the browser know what real estate to allot an
image before the image is actually downloaded, avoiding
layout changes and undesired "jumps" in the UI. Be aware
that this disagrees with the best practice of separate
content and presentation layer to a great extent.

With regard to type, there are indeed three types of images used on the web: GIF,
JPEG, and PNG. These are based on different compression algorithms built for very
different purposes. GIF images are optimized for low color palette images. They
support 256 colors and are lossless and interlaced, which means they are rendered
in layers rather than all at once (going from blurry to focused as you download and
render them). They are ideal for logos and site graphics based on a lower color palette.
JPEG images are ideal for high resolution photos as they support a higher color palette
of 16 million colors. PNG images can support 256, 24 bit or 32 bit color palettes image
formats with optional transparency, a very flexible and highly compressed lossless
format, with superior transparency support and compression than GIF. The PNG
algorithm was created as an open alternative to the GIF compression format, whose
original creator, Unisys, announced in 1995 that it would be enforcing its patent on
the algorithm.

Internet Explorer 6 and previous versions do not support PNG
transparency based on HTML standards; instead it is necessary
to use proprietary filters.
For example, filter:progid:DXImageTransform.
Microsoft.AlphaImageLoader(src='image.png'
,sizingMethod='crop');.

Optimizing CSS
The best way to optimize your CSS is to reduce the file size. There are a number of
things you can do to accomplish this. You can reduce whitespace by placing styles
on a single line.

Implement the following line of code:

body {background-color:#fff;color:#000;font-size:1.0em;font-
family:Arial;}

www.ebookee.org

http://www.ebookee.org/

Finishing Up: Performance

[296]

Instead of this:

body
{
 background-color:#ffffff;
 color:#000000;
 font-size:1.0em;
 font-family:Arial;
}

You can use shorthand for many rules.

Implement the following line of code:

p {margin:10px 20px;}

Instead of this:

p
{
 margin-top: 10px;
 margin-right: 20px;
 margin-bottom: 10px;
 margin-left: 20px;
}

It is also best to group similar styles as close together as possible and to combine
duplicated styles wherever necessary.

Implement the following line of code:

p, ul {color:#efefef;}

Instead of this:

p {color:#efefef;}
ul {color:#efefef;}

If you decide not to follow these recommendations to maintain
readability, or even if you follow them, it is always possible to
minify your code (as we explain in the following sections).

www.ebookee.org

http://www.ebookee.org/

Chapter 13

[297]

Another alternative is to use a dynamic stylesheet language such as Less
(http://lesscss.org). Less extends basic CSS functionality, allowing
us to use more complex and elegant structures that will be translated in
a standard CSS after a compilation process.

With normal CSS you need to repeat common properties such as colors:

p{color:#efefef}
div.box{border:1px solid #efefef}

Using Less you can define a variable @active-color and then use it through your
styles, so you only need to change the value of those variables to change the color
of multiple properties:

@active-color:#efefef;
p{color:@active-color }
div.box{border:1px solid @active-color}

You can even create nested structures like so:

@active-color:#efefef;
.content{
 div.box{border:1px solid @active-color}
 p{color:@active-color }
}

That will translate after compile in the following:

.content div.box{border:1px solid @active-color}

.content p{color:@active-color }

www.ebookee.org

http://www.ebookee.org/

Finishing Up: Performance

[298]

JavaScript performance considerations
While writing JavaScript can be fraught with peril as it is very easy to introduce slow
running code, keeping some simple guidelines in mind could keep your enterprise
application from running too slow.

First of all, traversing the DOM can be expensive. You want to minimize the number
of times you invoke document.getElementById and, even worse, document.
getElementsByTagName. Capturing a reference to a DOM element into a variable
and using the variable can save on expensive calls to the DOM.

So instead of implementing the following code:

document.getElementsById("elementId").setAttribute("data-position", 1);
document.getElementsById("elementId").setAttribute("data-position", 1);

Or implementing its equivalent in jQuery:

$("#elementId").attr("data-position", 1);
$("#elementId").attr("data-position", 1);

You can implement the following code:

var element= document.getElementsById("elementId");
element.setAttribute("data-position", 1);
element.setAttribute("data-position", 1);

www.ebookee.org

http://www.ebookee.org/

Chapter 13

[299]

Or you can implement its equivalent in jQuery:

var element= $("#elementId");
element.attr("data-position", 1);
element.attr("data-position", 1);

Secondly, avoid constructs such as with() and for-in.

Thirdly, remember that arrays can be slow. Traversing an array—especially a deep
array—can be costly. If you are pulling the same element from an array many times,
it is better to capture it in a variable first. That is, instead of the following code:

var array=[1,2,3,4,5];
console.log(array[3]+2);
console.log(array[3]*3);

Or this:

var array=[1,2,3,4,5];
var elementSelected=array[3];
console.log(elementSelected+2);
console.log(elementSelected*3);

Fourthly, arrays are not as slow as DOM collections. Looping over document.
getElementsByTagName('p') is much slower than capturing the result in an
array and looping over that.

Lastly, changing classes on a DOM element is less expensive than change styles.
It is better to define multiple CSS classes and toggle between them than directly
changing the style of an element.

So, instead of the following code:

domObject.style.display="none";

Or its jQuery version:

$(domObject).css(display, "none");

You can implement the following code:

domObject.setAttribute("class", "hideClass");

Or this:

$(domObject.attr("class","hideClass");

www.ebookee.org

http://www.ebookee.org/

Finishing Up: Performance

[300]

You can also benchmark your JavaScript using a tool called jsPerf (http://jsperf.
com/). It provides a way to create test cases for JavaScript code snippets so that you
can benchmark their performance. If you are wondering which is faster, document.
getElementsByTagName or document.getElementsByClassName, this tool will allow
you to test your theory on your browser. Furthermore, it allows you to share your test
cases so that others can test on different browsers giving you statistics across various
browsers and platforms.

Additional page performance
considerations
An enterprise application can be composed of many files including HTML, CSS,
JavaScript, and images. Although for maintainability, it is proper to break out your
CSS and JavaScript files. When deploying your code, combining and minifying your
files leads to better performance. Minification is a compression technique for code
in which all unnecessary characters are removed while the behavior is preserved.
There are a number of tools that will do this for you including the following:

•	 JSMin (http://www.crockford.com/javascript/jsmin.html)
•	 Packer (http://dean.edwards.name/packer/)
•	 YUI Compressor (http://developer.yahoo.com/yui/compressor/)

In the vein of reducing file size, minimizing requests, and in general using as little
bandwidth as possible, the use of CSS sprites has become common these days
wherein all of the static graphic elements for an application are combined into a
single image, parts of which are displayed using CSS. This way only one image
needs to be downloaded once instead of many.

Server-side considerations
An enterprise application often has many static assets that are downloaded from
the server with each page request. As this creates a lot of unnecessary traffic on the
server, one way to offload the burden is to use a content delivery network or CDN.
A CDN allows you to mirror your pages on a network of servers that are optimized
for delivering static assets quickly. You can place your static assets on a CDN such
as Akamai, Edgecast, or Cloudflare as well as use CDN-hosted versions of popular
libraries. Google hosts a number of libraries for public consumption such as jQuery
in its CDN (https://developers.google.com/speed/libraries/) as does cdnjs
(http://cdnjs.com/).

www.ebookee.org

http://jsperf.com/
http://www.ebookee.org/

Chapter 13

[301]

Many web servers such as Apache can be instructed to compress what they send
to the browser before they send it. If you are able to, adding a Content-Encoding
header set to gzip in your response can reduce the amount of data transferred by
70 percent.

It is important to consider caching in your enterprise application. If the same request
is made over and over again, and the response is always the same or seldom changes,
cache the response and send it back when subsequent requests are made. Browsers
intrinsically support this with the Cache-Control header and the Expires header.
While Expires tells the browser how long to keep content in the page cache, Cache-
Control provides a set of rules for when to keep and when to invalidate the cache.
Some useful parameters include the following:

•	 max-age: This indicates the maximum amount of time before a piece of
content should be refreshed

•	 public: This indicates that a piece of content is cacheable even though
it requires authentication

•	 private: This indicates that a piece of content is cacheable on a
per-user basis

•	 no-cache: This indicates that a piece of content can be cached but should be
refreshed on every request

•	 no-store: This indicates that a piece of content should not be kept in cache
•	 must-revalidate: This indicates that the browser must check with the

server first before serving a cached version

Caching not only helps to improve response times, it relieves your server load and
reduces network traffic.

Yahoo! has provided a number of useful guidelines for ensuring page performance.
While many of these topics have already been covered, you are encouraged to check
out the guidelines for yourself at http://developer.yahoo.com/performance/.

Performance analytics
You may yet follow all of the rules for optimal performance and still find yourself
with a slow application. When this happens, you need to become adept at assessing
load times and profiling your application. Fortunately, there are many tools available
to help pinpoint the bottlenecks; these tools are explained in the coming sections.

www.ebookee.org

http://www.ebookee.org/

Finishing Up: Performance

[302]

Load times
All of the major browsers include a network tab that will graphically display all of
the requests and responses between the browser and the servers it contacts. Firefox
includes a Net tab as part of the Firebug add-on as shown in the following screenshot:

It displays a set of bars that indicate load time per request over time. Here you can
see the web page loading piece-by-piece including how it loads the HTML first and
then requests the ancillary assets afterward: image files, CSS files, JavaScript files,
and even subsequent AJAX requests. As you can see in the following screenshot,
when you hover over each bar, you will see statistics about that request including
DNS lookup, connection time, the time to send the request, wait, and receive the
response, and so on.

www.ebookee.org

http://www.ebookee.org/

Chapter 13

[303]

This is particularly helpful when attempting to debug a performance problem
because it tells you very clearly whether slowness is due to a connection problem
or a page load problem, for example, how the HTML is constructed and parsed.
Knowing these finer details helps greatly to uncover and remove bottlenecks.

In addition to browser-based tools to assess load time, there are external services
that allow you to assess load time. In particular, Pingdom (http://tools.pingdom.
com/fpt/) provides a service that you can use to periodically test the load times
of your web application. It provides a similar chart for determining where your
bottlenecks are. Alternatives include the following:

•	 Google Speed (https://developers.google.com/speed/)
•	 YSlow (http://developer.yahoo.com/yslow/)
•	 Gomez (http://www.gomez.com/website-performance-test/)

Profilers
Profilers are another way to assess performance. Typically, they list JavaScript calls
in order of execution time, which can be really helpful to pinpoint slow-running
functions. Some browsers such as Google Chrome and Safari include a CSS selector
profiler, which lists the slowest running CSS selectors.

www.ebookee.org

http://www.gomez.com/website-performance-test/
http://www.gomez.com/website-performance-test/
http://www.ebookee.org/

Finishing Up: Performance

[304]

Firefox has a profiler built into its Firebug add-on. Click on the Console tab and
click on Profile.

In Google Chrome's Developer Tools, you will find a Profiles tab.

Safari provides an Instrument tab.

Internet Explorer 9 offers a profiler as well in its Developer Tools. Click on Profiler
and then the Start profiling button to get started.

Profilers will usually list out the slowest running functions, how many times they
were invoked, and the amount of time they took to execute. They typically split the
notion of execution time into two categories. Some call it exclusive time while others
call it self or own time. This is the execution time while within a function, excluding
the execution time of other functions invoked from within that function. The other
category is referred to as inclusive time, total time, or just time. This is the execution
time of a function including functions that are invoked from within it.

www.ebookee.org

http://www.ebookee.org/

Chapter 13

[305]

Summary
We covered ways to ensure performance of your enterprise application on many
different levels. There are ways to ensure clean HTML that your browser will
understand, and there are ways to ensure optimal CSS and JavaScript. There are
ways to reduce the page footprint, decrease the number of requests, and place less
of a burden on the browser. While each of these is important in their own way, real
performance gains are not always apparent until you put them all together.

We have built our example application, MovieNow, including the most important
steps to build any enterprise application; from the definition of a meaningful
structure using semantic tags, to the styling and animations with CSS3, showing
new and exciting features such as canvas 2D and WebGL, geolocation, video,
audio, drag-and-drop, and web workers. We practised the use of real world APIs
such as Twitter, and reviewed a set of tools and libraries to facilitate the process
of development, testing, and performance improvement.

We encourage you to continue reading about new web technologies. As we speak,
there are many developers who are creating not only new enterprise applications
but new libraries, techniques, tools, and paradigms of thought that can redefine
the web as we know it.

Finally, we hope you have enjoyed this journey as much as we have, and that the
initial guidelines of this book lead you to many successful HTML5 projects.

www.ebookee.org

http://www.ebookee.org/

www.ebookee.org

http://www.ebookee.org/

Index
Symbols
2D context

about 180
canvas font styling methods 181
canvas methods 180
canvas styling methods 180
chart design 179
complex shapes drawing, methods 181, 182
drawing charts 182-185
shape drawing, methods 181

3D context
about 185
animate3DChart method 196
geometries, animating 192-196
geometry 188-191
material 188
mesh 188
textures 188
Three.js 187
WebGL specification 186
window.requestAnimFrame method,

creating 196
[attribute$=value] 139
[attribute^=value] 139
[attribute*=value] 139
:checked 139
:disabled 138
:empty 138
:enabled 138
:first-of-type 136
:last-child 137
:last-of-type 136
:not(selector) 138
:nth-child(n) 137

:nth-last-child(n) 137
:nth-last-of-type(n) 137
:nth-of-type(n) 137
:only-child 136
:root 137
:target 138

A
adaptive web design

about 82
CSS files importing, media queries used 83
media queries, using as conditions 83-86
other CSS, importing 83

add-ons
about 45
FireStorage 47
HTML5toggle 47

Adobe Dreamweaver CS6 36, 37
AJAX 99-101
alt attribute 139
anatomy, Web Worker

about 249, 250
dedicated Web Worker 249
shared Web Worker 249

animate3DChart method 196
animation property 132
animations 128-133
Apache 43
Apache Tomcat 44
Aptana Studio 3, 38, 39
async attribute 20
audio player

custom controller 170
implementing 169

www.ebookee.org

http://www.ebookee.org/

[308]

authenticating
styles, adding 226-229
user logged in 224-226
user not logged in 222-224

authenticating process 220, 221

B
background-color attribute 137
basic styling 77-81
BlueGriffon 1.5.2 40
border-collapse:collapse 72
Browser Mode 51
browsers

about 18, 19
JavaScript engine 20, 21
rendering engine 19

BrowserStack 290
browser testing

about 289
continuous integration 290

C
canvas context 178
canvas tag 173
CDN 300
Charles 53
charts

about 173
code, preparing 174-178

checkValidity method 240, 242
Chrome Frame 198
Cloud9 42, 43
color setting, MovieNow

HSL 111
HSL and alpha 112
red, green, blue 111
Red, green, blue, and alpha 111

Colorzilla Gradient Generator 113
compatibility

defining 17, 18
importance 24

Console tab 271, 304
context.arcTo() method 182
context.beginPath() method 182
context.bezierCurveTo() method 182

context.clearRect() method 181
context.closePath() method 182
context.fill() method 182
context.fillRect() method 181
context.fillStyle(value) method 180
context.fillText() method 181
context.font(value) method 181
context.isPointInPath() method 182
context.lineCap(value) method 181
context.lineJoin(value) method 181
context.lineTo() method 182
context.lineWidth(value) method 181
context.moveTo()method 182
context.quadraticCurveTo() method 182
context.rect() method 182
context.stroke() method 182
context.strokeRect() method 181
context.strokeStyle(value) method 180
context.strokeText() method 181
CrossBrowserTesting 290
CSS

optimizing 295-297
playing with 262-266

CSS3 Pie 108, 110
CSS3 resets

about 68-70
individual sides 70
shorthand 71-73

CSS3 selectors
applying 135-139
[attribute$=value] 139
[attribute^=value] 139
[attribute*=value] 139
:checked 139
:disabled 138
element1~element2 139
:empty 138
:enabled 138
:first-of-type 136
:last-child 137
:last-of-type 136
:not(selector) 138
:nth-child(n) 137
:nth-last-child(n) 137
:nth-last-of-type(n) 137
:nth-of-type(n) 137

www.ebookee.org

http://www.ebookee.org/

[309]

:only-child 136
:only-of-type 136
:root 137
:target 138

CSS properties
prefix 108
syntax 108

CSS sticky footer. See sticky footer
Curved Corner 110
custom controller, audio player

about 170
styling 170

custom controls
about 146, 147
buttons, styling 149, 150
features, detecting 152
fullscreen-button 148
image sprites, styling 149, 150
interactions adding, JavaScript used 155
play-button 148
seek 148
seek, styling 151, 152
sliders, styling 152-155
styling 148, 149
timer 148
volume bars, styling 151, 152
volume-container 148
volume-slider 148

D
dataTransfer property 210
DebugBar 262
debugging

about 259
browsers' tools 261, 262
tools 260

Developer Tools | Opera Dragonfly 52
disabled property 138
displayShowtimes method 200
DnD 199
Document Mode 51
DOMContentLoaded event 20
drag

about 204, 205
handling, JavaScript used 206, 207

drag-and-drop functionality. See DnD

dragend event 206
dragenter event 206
drag events

drag 206
dragend 206
dragenter 206
dragleave 206
dragover 206
dragstart 206
drop 206

dragleave event 206
dragover event 206
dragstart event 206
dragstart event 210
drawBarChart method 178
drop event 211
drop zone

toggling 209
dynaTrace 262

E
Eclipse engine 38
editors

choosing 35, 36
element1~element2 139
elements

data, transferring 210
dropping 207, 209
drop zone, toggling 209

errorCallback function 90
event listener

updating 253-256
eXo 42
Explorer Canvas

about 31
using 31

F
favico

about 64
creating 64-68

favicon.cc 64
feature detection 27
Fiddler 53
Find Movies button 96

www.ebookee.org

http://www.ebookee.org/

[310]

Firebug 46
Firebug plugin 261
FireStorage 47
formatTime method 202
framework, unit testing

Jasmine 283
JsTestDriver 280
QUnit 282
Sinon.JS 282

functional testing
about 283, 284
PHPUnit 286-289
php-webdriver connector 286
setting up 284
standalone server 285

G
GENERATE! button 28
geocodes

capturing 248, 249
geolocation API

about 88
PositionOptions function, attributes 88, 89
request 89, 90
successCallback function, properties 89

getChartColor method 183
getCurrentPosition() method 88
getTweetsByTheater method 252
Gomez 303
Google Chrome

about 48, 49
channels 49

Google Speed 303
graceful degradation 33

H
H.264 21
HEVC 142
hideTweetArea method 239
High Efficiency Video Coding. See HEVC
HLS 143
HTML

playing with 262-266
HTML5

video 141

HTML5 audio
about 169
support 169

HTML5 Boilerplate
about 32
downloading 32

HTML5 Shim 25
HTML5 Shiv

about 25
installing 26, 27

HTML5toggle 47
HTML5 video

about 141
browser supports 142

HTML tab 262
HTTP Live Streaming. See HLS
HTTP proxies

about 52
Charles 53
Fiddler 53

I
ico file 64
icons 64
IDEs

about 35
Adobe Dreamweaver CS6 36, 37
Aptana Studio 3 38, 39
BlueGriffon 1.5.2 40
choosing 35, 36
Cloud9 42, 43
eXo 42
Maqetta 41

IE6 funeral 21
IIFE 92
images

optimizing 294, 295
immediately invoked function

expression. See IIFE
Initializr

about 32
downloading 32

init method 207
input fields types

color 245
date 245

www.ebookee.org

http://www.ebookee.org/

[311]

datetime 245
datetime-local 245
email 245
month 245
number 245
range 245
search 245
tel 245
time 245
url 245
week 245

Instrument tab 304
Integrated Development Environments. See

IDEs
interactions, adding to custom controls

endReproduction 161, 168
format time 160
full screen 159, 160
functions 158
initial settings 155
pause 159
play-button 159
seek slider, setting 157, 158
time, controlling 161
video controllers, initializing 155
volume slider, initializing 158

Internet Explorer 51
ipconfig getifaddr en1. command 274

J
Jasmine 283
JavaScript

console tab 269
load times, analyzing 270
performance considerations 298-300
profiling 271
Script tab 266-268
used, for drag handling 206, 207
using 266-268

JavaScript Object Notation with
Padding. See JSONP

Jetty 44
jQuery library 99
jQuery plugins 245
jQuery tmpl 124
JSMin 300

JSONP 91
jsPerf 300
JsTestDriver 280, 281

L
layout engine 19
Less 297
LightTPD 45

M
Mac OS X 10.6 36
MAMP 45
Maqetta 41
max-age parameter 301
media queries

using 133-135
metadata

about 59-61
meta tags 60, 61

microdata
about 62-64
genre attribute 64
name attribute 64

Minification 300
mobile debugging 271
Modernizr

about 27, 28
using 28-31

MovieNow
animations 127, 128
box shadows, adding 115-118
charting 173
color, setting 110
gradients, adding 112-115
list, styling 125-127
rounded corners, adding 109, 110
styles, adding to 109
styling 122-124
text shadows, adding 118, 119
transitions 127
tricks 120, 121
showtimes 199-201
used, for tweeting 220

MovieNow application
geolocation, adding 90-93
location, obtaining 94-97

www.ebookee.org

http://www.ebookee.org/

[312]

postal codes, obtaining 97-99
showtimes 102-106

Mozilla Firefox
about 46
channels 47

Mustache 124
must-revalidate parameter 301

N
Net tab 270, 302
no-cache parameter 301
Node.js 45
no-store parameter 301
novalidate attribute 245

O
objectifyJSON function 254
Ogg Theora 21
onreadystatechange event 253
Opera 51, 52
OrthographicCamera 187
OS platforms 22
overflow:hidden technique 76

P
Packer 300
page performance

considerations 300
server-side considerations 300, 301

page structure
about 56
navigation list 58
secondary content 58, 59
web applications layout 56-58

performance analytics
about 301
load times 302, 303
profilers 303, 304

PerspectiveCamera 187
PHPUnit 286
php-webdriver connector 286
Pingdom 303
PositionOptions function 88
prepackaged stacks

MAMP 45

WAMP 45
XAMPP 45

private parameter 301
Profilers 303
Profiles tab 304
progressive enhancement 33
public parameter 301
Pure 124

Q
QUnit 282

R
Real Time Messaging Protocol. See RTMP
remote debugging

in iOS 6 272
responsive web design 23

about 82
CSS files importing, media queries used 83
media queries, using as conditions 83-86
other CSS, importing 83

Responsive Web Design. See RWD
results

displaying 211, 213
reverseGeocode method 100
robots meta tag 61
RTMP 143
RWD 55

S
Safari 50, 51
Sauce Labs 290
screen resolution 23, 24
Script tab 266
Selenium 289
showCharts method 189
showDetails method 256
showtimes

adding 199-201
styling 202, 203

Sinon.JS 282
Snippet Editor 50
standards

following 294
Start profiling button 304

www.ebookee.org

http://www.ebookee.org/

[313]

sticky footer 74-76
Style tab 264

T
testing

about 277
types 277

testing, types
browser testing 289
functional testing 283
unit testing 278

text-indent property 78
text-shadow property 118
Three.js

about 187
camera 187
scene 187

timeupdate event 161
Tornado 44
transitions 128-133
tweeting

MovieNow, using 220
tweet posting

form validation 244, 245
HTML, applying 231, 232
JavaScript interactions, adding 238-243
more styles, adding 232-237
service, calling 229, 230

tweets
nearby-tweets 256
styling 256, 258

Twitter
developer page 216

Twitter AP
registering 216-219

U
Underscore 124
unit testing

about 278
frameworks 280
JsTestDriver 280
results, verifying 280
setting up 278
target, invoking 279, 280
test case 278

updateCount method 239
user experiences (UX) 33

V
video player

custom controls 146
implementing 143-146
improvements 168

W
W3C 17 294
W3C Geolocation API

about 88
rendered mobile devices 88
supported browsers 88
working 88

WAMP 45
watchPosition() method 88
web browser engine 19
web debugging

proxies 273, 274
WebGL

enabling 198
Web Inspector option 272
WebM 21
Web Performance Optimization. See WPO
web servers

about 45
Apache 43
choosing 43
Firebug 46
Google Chrome 48, 49
Internet Explorer 51
Jetty 44
LightTPD 45
Mozilla Firefox 46
Node.js 45
Opera 51, 52
Safari 50, 51
Tornado 44

Web Worker
about 247
anatomy 249
event listener, updating 253-256
using, for nearby tweet obtaining 251-253

www.ebookee.org

http://www.ebookee.org/

[314]

World Wide Web Consortium. See W3C
WPO 293

X
XAMPP 45

Y
Yahoo User Interface (YUI) 69
YSlow 303

www.ebookee.org

http://www.ebookee.org/

Thank you for buying
HTML5 Enterprise Application Development

About Packt Publishing
Packt, pronounced 'packed', published its first book "Mastering phpMyAdmin for Effective
MySQL Management" in April 2004 and subsequently continued to specialize in publishing
highly focused books on specific technologies and solutions.

Our books and publications share the experiences of your fellow IT professionals in adapting
and customizing today's systems, applications, and frameworks. Our solution based books give
you the knowledge and power to customize the software and technologies you're using to get
the job done. Packt books are more specific and less general than the IT books you have seen in
the past. Our unique business model allows us to bring you more focused information, giving
you more of what you need to know, and less of what you don't.

Packt is a modern, yet unique publishing company, which focuses on producing quality,
cutting-edge books for communities of developers, administrators, and newbies alike. For more
information, please visit our website: www.packtpub.com.

About Packt Enterprise
In 2010, Packt launched two new brands, Packt Enterprise and Packt Open Source, in order to
continue its focus on specialization. This book is part of the Packt Enterprise brand, home to
books published on enterprise software – software created by major vendors, including (but
not limited to) IBM, Microsoft and Oracle, often for use in other corporations. Its titles will offer
information relevant to a range of users of this software, including administrators, developers,
architects, and end users.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals should
be sent to author@packtpub.com. If your book idea is still at an early stage and you would like
to discuss it first before writing a formal book proposal, contact us; one of our commissioning
editors will get in touch with you.

We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

www.ebookee.org

http://www.ebookee.org/

Responsive Web Design with
HTML5 and CSS3
ISBN: 978-1-849693-18-9 Paperback: 324 pages

Learn responsive design using HTML5 and CSS3 to
adapt websites to any browser or screen size

1.	 Everything needed to code websites in HTML5
and CSS3 that are responsive to every device or
screen size

2.	 Learn the main new features of HTML5 and
use CSS3's stunning new capabilities including
animations, transitions and transformations

3.	 Real world examples show how to
progressively enhance a responsive design
while providing fall backs for older browsers

HTML5 Games Development by
Example: Beginner's Guide
ISBN: 978-1-849691-26-0 Paperback: 352 pages

Create six fun games using the latest HTML5,
Canvas, CSS, and JavaScript techniques

1.	 Learn HTML5 game development by building
six fun example projects

2.	 Full, clear explanations of all the essential
techniques

3.	 Covers puzzle games, action games,
multiplayer, and Box 2D physics

4.	 Use the Canvas with multiple layers and sprite
sheets for rich graphical games

Please check www.PacktPub.com for information on our titles

www.ebookee.org

http://www.ebookee.org/

HTML5 Mobile Development
Cookbook
ISBN: 978-1-849691-96-3 Paperback: 254 pages

Over 60 recipes for building fast, responsive HTML5
mobile websites for iPhone 5, Android, Windows
Phone, and Blackberry

1.	 Solve your cross platform development
issues by implementing device and content
adaptation recipes.

2.	 Maximum action, minimum theory allowing
you to dive straight into HTML5 mobile
web development.

3.	 Incorporate HTML5-rich media and geo-location
into your mobile websites.

HTML5 Canvas Cookbook
ISBN: 978-1-849691-36-9 Paperback: 348 pages

Over 80 recipes to revolutionize the web experience
with HTML5 Canvas

1.	 The quickest way to get up to speed
with HTML5 Canvas application and
game development

2.	 Create stunning 3D visualizations and games
without Flash

3.	 Written in a modern, unobtrusive, and objected
oriented JavaScript style so that the code can be
reused in your own applications.

Please check www.PacktPub.com for information on our titles

www.ebookee.org

http://www.ebookee.org/

	Cover
	Copyright
	Credits
	About the Authors
	About the Reviewers
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: HTML5 Starter Kit: Compatibility
	The real meaning of compatibility
	Browsers
	Rendering engine
	JavaScript engine

	OS platforms
	Display resolution
	Importance of compatibility
	Patching the differences:
compatibility libraries
	HTML5 Shiv
	Modernizr
	Explorer Canvas
	HTML5 Boilerplate

	Before starting app development
	Summary

	Chapter 2: HTML5 Starter Kit:
Useful Tools
	Choosing editors and IDEs
	Adobe Dreamweaver CS6
	Aptana Studio 3
	BlueGriffon 1.5.2
	Maqetta
	eXo
	Cloud9

	Choosing web servers
	Apache
	Apache Tomcat
	Jetty
	Tornado
	nginx
	LightTPD
	Node.js

	Pre-packaged stacks
	Web browsers and add-ons
	Mozilla Firefox
	Google Chrome
	Safari
	Internet Explorer
	Opera

	HTTP proxies
	Charles
	Fiddler

	Summary

	Chapter 3: The App: Structure
and Semantics
	Understanding page structure
	Navigation list
	Secondary content

	Metadata
	Microdata
	Favicons and icons
	CSS3 resets
	Individual sides
	Shorthand

	Sticky footer
	General styling
	Responsive web design and adaptive web design
	Importing CSS files using media queries
	Importing other CSS from our main CSS
	Using media queries as conditionals in our
main CSS

	Summary

	Chapter 4: The App: Getting Movies
Via Geolocation
	How it works
	The API
	A simple request
	Movies near you
	Self-invoking
	That becomes this
	Getting location
	Getting postal codes
	AJAX ain't just a cleaning product
	From postal codes to showtimes

	Summary

	Chapter 5: The App: Displaying Movie Data via CSS3
	Back to the browsers' babel tower
	CSS3 Magic – adding more styles to MovieNow
	Adding rounded corners
	Setting color
	Red, green, and blue
	Red, green, blue, and alpha
	Hue, saturation, and lightness
	Hue, saturation, lightness, and alpha

	Adding gradients
	Adding box shadows
	Adding text shadows
	Some tricks to fake 3D

	Movies and styles
	Styling our list
	Transitions
	Animations

	Choosing between transitions and animations
	Using media queries
	Applying CSS3 selectors
	Summary

	Chapter 6: The App: Trailers via
HTML5 Video
	Introducing HTML5 video
	Implementing a video player
	Custom controls
	Styling
	Adding interactions using JavaScript

	Possible improvements
	Still not perfect

	Introducing HTML5 audio
	Implementing an audio player
	Custom controllers
	Styling

	How I learned to stop worrying and
love Flash
	Summary

	Chapter 7: The App: Showing Ratings via Canvas
	Charting
	Preparing our code
	Everything depends on the context
	2D context
	An overview of the Canvas 2D Drawing API
	Drawing charts

	3D context – WebGL and experimental WebGL
	Entering a tridimensional world
	Three.js

	Summary

	Chapter 8: The App: Selection UI via Drag-and-Drop
	Adding showtimes
	Styling showtimes
	What a drag
	Handling drag with JavaScript

	Drop it
	Toggling the drop zone
	Transferring some data
	Displaying the results

	Summary

	Chapter 9: The App: Getting the Word Out via Twitter
	Registering our application
	How to tweet in MovieNow?
	Authenticating
	User not logged and/or application not authorized
	User logged in
	Adding some styles

	Posting tweets
	Service
	Applying HTML
	Adding more styles
	Adding JavaScript interactions
	Form validation support across browsers

	New input fields types
	Summary

	Chapter 10: The App: Consuming Tweets Via Web Workers
	Getting the data
	Capturing geocodes
	Anatomy of a Web Worker
	Using Web Workers to get nearby tweets
	Updating the event listener
	Styling the tweets
	Summary

	Chapter 11: Finishing Up: Debugging
your App
	What to look for
	Which tools to use
	Playing with HTML and CSS
	Step-by-step with JavaScript
	JavaScript console
	Analyzing load times
	JavaScript profiling

	Mobile debugging
	Web debugging proxies
	Summary

	Chapter 12: Finishing Up:
Testing Your App
	Types of testing
	Unit testing
	Setting up your unit test
	Invoking your target
	Verifying the results
	Frameworks and tools
	JsTestDriver
	QUnit
	Sinon.JS
	Jasmine

	Functional testing
	The Selenium standalone server
	The php-webdriver connector from Facebook
	PHPUnit

	Browser testing
	Continuous integration
	Summary

	Chapter 13: Finishing Up: Performance
	Web Performance Optimization (WPO)
	Following standards
	Optimizing images
	Optimizing CSS
	JavaScript performance considerations
	Additional page performance considerations
	Server side considerations

	Performance analytics
	Load times
	Profilers

	Summary

	Index

